Skip to main content
Log in

The trace problem for Sobolev spaces over the Heisenberg group

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

This article deals with microlocally weighted Sobolev spaces over the Heisenberg group ℍd, in relation with the canonical subriemannian contact structure

$$\kappa = dt + 2(pdq - qdp)$$

. The main purpose is to give a complete description of the restriction to hypersurfaces of functions that belong to those Sobolev spaces, through a trace and lifting theorem. The function spaces of the restrictions involve an additional weight in the space variable, near points where the contact structure of ℍd agrees with the hypersurface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio and S. Rigot, Optimal mass transportation in the Heisenberg group, J. Funct. Anal. 208 (2004), 261–301.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Bahouri, J.-Y. Chemin and I. Gallagher, Inégalités de Hardy précisées, C. R. Math. Acad. Sci. Paris 341 (2005), 89–92.

    MATH  MathSciNet  Google Scholar 

  3. H. Bahouri, J.-Y. Chemin and I. Gallagher, Refined Hardy Inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2006), 375–391.

    MATH  MathSciNet  Google Scholar 

  4. H. Bahouri, J.-Y. Chemin and C.-J. Xu, Trace and trace lifting theorems in weighted Sobolev spaces, J. Inst. Math. Jussieu 4 (2005), 509–552.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Bahouri, J.-Y. Chemin and C.-J. Xu, Trace theorem on the Heisenberg group, on homogeneous surfaces, in Phase Space Analysis of Partial Differential Equations, Birkhauser Boston, Boston, MA, 2006, pp. 1–15.

    Google Scholar 

  6. H. Bahouri and I. Gallagher, Paraproduit sur le groupe de Heisenberg et applications, Rev. Mat. Iberoamericana 17 (2001), 69–105.

    MATH  MathSciNet  Google Scholar 

  7. H. Bahouri, P. Gérard and C.-J. Xu, Espaces de Besov et estimations de Strichartz géné ralisées sur le groupe de Heisenberg, J. Anal. Math. 82 (2000), 93–118.

    MATH  MathSciNet  Google Scholar 

  8. J. Bergh and J. Löfström, Interpolation Spaces, Mir, Moscow, 1980.

    Google Scholar 

  9. S. Berhanu and I. Pesenson, The trace problem for vector fields satisfying Hörmander’s condition, Math. Z. 231 (1999), 103–122.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.-M. Bony, Problème de Dirichlet et semi-groupe fortement fellerien associés à un opérateur intégro-differentiel, C. R. Acad. Sci. Paris Sér. A–B, 265 (1967), A361–A364.

    MathSciNet  Google Scholar 

  11. J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hormander, Bull. Soc. Math. France 122 (1994), 77–118.

    MATH  MathSciNet  Google Scholar 

  12. J.-Y. Chemin, Perfect Incompressible Fluids, The Clarendon Press, Oxford University Press, New York, 1998

    MATH  Google Scholar 

  13. M. Derridj, Un problème aux limites pour une classe d’opérateurs du second ordre hypoelliptiques, Ann. Inst. Fourier, 21 (1971), 99–148.

    MATH  MathSciNet  Google Scholar 

  14. F. Jean, Uniform estimations of sub-Riemannian balls, J. Dynam. Control Systems 7 (2001), 473–500.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. S. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, I–II, J. Funct. Anal. 43 (1981), 97–142; 224–257.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. S. Jerison and A. Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), 835–854.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Monti and D. Morbidelli, Trace theorems for vector fields, Math. Z. 239 (2002), 747–776.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Mustapha and F. Vigneron, Construction of Sobolev spaces of fractional order in a subriemannian case, Preprint CMLS 2005, École polytechnique.

  19. A. Nagel and E. M. Stein, Lectures on pseudodifferential operators: regularity theorems and applications to nonelliptic problems, Princeton University Press, Princeton, NJ, 1979.

    Google Scholar 

  20. E. M. Stein, The characterization of functions arising as potentials II, Bull. Amer. Math. Soc. 68 (1962), 577–582.

    Article  MathSciNet  Google Scholar 

  21. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Vigneron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigneron, F. The trace problem for Sobolev spaces over the Heisenberg group. J Anal Math 103, 279–306 (2007). https://doi.org/10.1007/s11854-008-0009-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-008-0009-5

Keywords

Navigation