Skip to main content
Log in

Localisation and weighted inequalities for spherical Fourier means

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this work, we establish certain equivalences between the localisation properties with respect to spherical Fourier means of the support of a given Borel measure and the L 2-rate of decay of the Fourier extension operator associated to it. This, in turn, is intimately connected with the property that the X-ray transform of the measure be uniformly bounded. Geometric properties of sets supporting such a measure are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Barceló, A. Ruiz and L. Vega, Weighted estimates for the Helmholtz equation and some applications, J. Funct. Anal. 150 (1997), 356–382.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. A. Barceló, J. Bennett and A. Carbery, A note on localised weighted estimates for the extension operator, J. Aust. Math. Soc., to appear.

  3. A. Carbery, E. Hernández and F. Soria, Estimates for the Kakeya maximal operator on radial functions in ℝ n, Harmonic Analysis (Sendai, 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, pp. 41–50.

    Google Scholar 

  4. A. Carbery, E. Romera and F. Soria, Radial weights and mixed norm inequalities for the disc multiplier, J. Funct. Anal. 109 (1992), 52–75.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Carbery and F. Soria, Almost everywhere convergence of Fourier integrals for functions in Sobolev spaces and an L 2-localisation principle, Rev.Mat. Iberoamericana 4 (1988), 319–337.

    MATH  MathSciNet  Google Scholar 

  6. A. Carbery and F. Soria, Sets of divergence for the localization problem for Fourier integrals, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 1283–1286.

    MATH  MathSciNet  Google Scholar 

  7. A. Carbery and F. Soria, Pointwise Fourier inversion and localisation in ℝ n, J. Fourier Anal. Appl. 3 (1997), 846–858.

    Article  MathSciNet  Google Scholar 

  8. L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Córdoba, The Kakeya maximal function and spherical summation multipliers, Amer. J. Math. 99 (1977), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Csörnyei and D. Preiss, Sets of finite \(\mathcal{H}^1 \) measure that intersect positively many lines in infinitely many points, Ann. Acad. Sci. Fenn. Math., to appear. http://www.homepages.ucl.ac.uk/~ucahmcs/publ/

  11. M. Csörnyei and L. Wisewell, Tube-measurability, preprint. http://arxiv.org/abs/math/0703807v1

  12. C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44–52.

    Article  MATH  MathSciNet  Google Scholar 

  13. V. A. Il’in. The problem of localisation and convergence of Fourier Series with respect to the fundamental system of functions of the Laplace operator, Russian Math. Surv. 23(2) (1968), 59–116.

    Article  MATH  Google Scholar 

  14. Y. Katznelson, An Introduction to Harmonic Analysis, 2nd ed., Dover, New York, 1976.

    MATH  Google Scholar 

  15. C. Kenig and P. Tomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), 79–83.

    MATH  MathSciNet  Google Scholar 

  16. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  17. M. Pinsky, Pointwise Fourier inversion in several variables, Notices Amer. Math. Soc. 42 (1995), 330–334.

    MATH  MathSciNet  Google Scholar 

  18. E. M. Stein, Some problems in harmonic analysis, in Harmonic Analysis in Euclidean Spaces, Part I, Amer. Math. Soc., Providence, RI, 1979, pp. 3–20.

    Google Scholar 

  19. E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  20. E. M. Stein and G. Weiss Introduction to Harmonic Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971.

    Google Scholar 

  21. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1922.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Carbery.

Additional information

The research of this paper has been partially supported by the EU Comission via the network HARP, and by MEC Grant MTM2004-00678.

The first author was partially supported by a Leverhulme Study Abroad Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbery, A., Soria, F. & Vargas, A. Localisation and weighted inequalities for spherical Fourier means. J Anal Math 103, 133–156 (2007). https://doi.org/10.1007/s11854-008-0004-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-008-0004-x

Keywords

Navigation