Skip to main content

Ecology in Chott Sidi Abdel Salam oasis, southeastern Tunisia: cultivated vegetation, fungal diversity and livestock population

Abstract

The Gabes oasis in the southeastern Tunisia is particularly important as it represents a unique coastal oases in the Mediterranean and the world. Chott Sidi Abdel Salam oasis, with an area of approximately 100 ha, was chosen for this study (2018–2019). Aiming to effectively manage and protect the biodiversity of this coastal oasis, the cultivated vegetable, fungal and livestock diversity were investigated using ecological indicators. Our results indicated that the agricultural system in this oasis is traditionally organized into three vegetation layers: palm trees, fruit trees and herbaceous plants. 41 vegetable species, representing 18 families and 32 genera, have been recorded. The highest values of species richness, species diversity, Simpson’s concentration of dominance, Simpson’s diversity index and equitability of evenness were registered for the lowest layer. Also, 15 fungal families, belonging to 27 genera and 33 species, were recorded in this oasis where the most frequent fungal species were Erysiphe pisi, Leveillula taurica and Sphaerotheca fuliginea. The ongoing results revealed that sheep (35.91%) registered the highest number of livestock, followed by poultry (32.17%). The findings of this study establish basic information on the overall biodiversity status in Chott Sidi Abdel Salam coastal oasis; some recommendations to maintain and conserve this rare agrosystem are also presented in this paper.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All data and materials are available.

References

  1. Ahmed DA, Fawzy M, Saeed NM, Awad MA (2015) Effect of the recent land use on the plant diversity and community structure of Omayed Biosphere Reserve. Egypt Glob Ecol Conserv 4:26–37

    Article  Google Scholar 

  2. Aissaoui M, Deghnouche K, Bedjaoui H, Boukhalfa HH (2019) Caractérisation morphologique des caprins d’une région aride du Sud-Est de l’Algérie. Revue de Médecine Vétérinaire 170:149-163

  3. Alexander HM (2010) Disease in natural plant populations, communities, and ecosystems: Insights into ecological and evolutionary processes. Plant Dis 94(5):492–503. https://doi.org/10.1094/PDIS-94-5-0492

    Article  Google Scholar 

  4. Allegui MB, Palloix A, Hamza N (1995) Résistance du piment (Capsicum sp) à Leveillula taurica: évolution de l'épidémie avec la croissance des plantes. Phytopathologia Mediterranea 34:143–148. https://www.jstor.org/stable/42685221

  5. Amano K (1986) Host range and geographical distribution of the powdery mildew fungi. Japan Scientific Societies Press, Japan

    Google Scholar 

  6. Amorri J, Geffroy-Rodier C, Boufahja F et al (2011) Organic matter compounds as source indicators and tracers for marine pollution in a western Mediterranean coastal zone. Environ Sci Pollut Res 18:1606–1616

    Article  Google Scholar 

  7. Anonymous (2019a) Historique météo à Gabès année par année. Available at: https://www.historique-meteo.net/afrique/tunisie/gabes/

  8. Anonymous (2019b) Valeurs climatiques moyennes et totales annuelles. Available at: https://fr.tutiempo.net/climat/ws-607650.html

  9. Ayadi N, Aloulou F, Bouzid J (2014) Assessment of contaminated sediment by phosphate fertilizer industrial waste using pollution indices and statistical techniques in the Gulf of Gabes (Tunisia). Arab J Geosci 8:1755–1767

    Article  Google Scholar 

  10. Aronson J, Floret C, Floc’h E, Ovalle C, Pontanier R (1993) Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands: A view from the South. Restor Ecol 1:8–17

    Article  Google Scholar 

  11. Baban SMJ, Foster IDL, Tarmiz B (1999) Environmental protection and sustainable development in Tunisia: an overview. Sustain Dev 7:191–203

    Article  Google Scholar 

  12. Bach EM, Williams RJ, Hargreaves SK, Yang F, Hofmockel KS (2018) Greatest soil microbial diversity found in micro-habitats. Soil Biol Biochem 118:217–226. https://doi.org/10.1016/j.soilbio.2017.12.018

    Article  Google Scholar 

  13. Barnett HL, Hunter BB (1972) Illustrated Genera of Imperfect Fungi. Burgess Publishing Co., Minneapolis

    Google Scholar 

  14. Bedjaoui H (2019) Etude de la diversité génétique de quelques accessions de palmier Dattier (Phoenix dactylifera L.) en Algérie moyennant les marqueurs de l’ADN de type SSR. Thèse doctorat, Université de Biskra

  15. Bedjaoui H, Benbouza H (2020) Assessment of phenotypic diversity of local Algerian date palm (Phoenix dactylifera L.) cultivars. J Saudi Soc Agric Sci 19(1):65–75

    Article  Google Scholar 

  16. Bengtsson J (1998) Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Appl Soil Ecol 10:191–199

    Article  Google Scholar 

  17. Ben Saleh M (2011) Agro-biodiversity and traditional knowledge on Tunisian coastal oases. J Environ Sci Eng 5:303–308

    Google Scholar 

  18. Bever JD, Mangan SA, Alexander HM (2015) Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst 46(1):305–325. https://doi.org/10.1146/annurev-ecolsys112414-054306

    Article  Google Scholar 

  19. Blackwell M (2011) The fungi: 1, 2, 3 ...5.1 million species? Am J Bot 98(3):426–438. https://doi.org/10.3732/ajb.1000298

    Article  Google Scholar 

  20. Blondel J (1995) Biogéographie, approche écologique et évolutive. Masson, Paris Bot

  21. Boughalleb N, Armengol J, El-Mahjoub M (2005) Detection of races 1 and 2 of Fusarium solani f. sp. cucurbitae and their distribution in watermelon fields in Tunisia. Phytopathology 153(3):162–168

    Article  Google Scholar 

  22. Boughalleb N, El-Mahjoub M (2006) Watermelon sudden decay in Tunisia: Identification of pathogenic fungi and determination of primary agents. Pak J Biol Sci 9(6):1095–1103

    Article  Google Scholar 

  23. Choplin A (2014) Olivier Pliez, Les cités du désert Des villes sahariennes aux saharatowns. Géocarrefour 89:52. https://doi.org/10.4000/geocarrefour.8669

  24. Collenette S (1999) Wild Flowers of Saudi. Arabia National Commission for Wild Life Conservation and Development (VCWCD), Riyadh

    Google Scholar 

  25. Cope T (1985) A key to the grasses of Arabian Peninsula: Studies in the flora of Arabia XV. Arab Gulf J Sci Res 1:1–82

    Google Scholar 

  26. De Haas H (2001) Migration and agricultural transformations in the oases of Morocco and Tunisia. KNAG, Utrecht

    Google Scholar 

  27. Eisenlohr PV, Alves LF, Bernacci LC et al (2013) Disturbances, elevation, topography and spatial proximity drive vegetation patterns along an altitudinal gradient of a top biodiversity hotspot. Biodivers Conserv 22:2767–2783

    Article  Google Scholar 

  28. El-Mahjoub M, Romdhani MS (1991) Determination of the causal agent of powdery mildew in off-season cucurbits in the Tunisian Sahel. Mededelingen Van De Faculteit Gent 56:399–405

    Google Scholar 

  29. El-Saied AB, El-Ghamry A, Khafagi OMA et al (2015) Floristic diversity and vegetation analysis of Siwa Oasis: An ancient agro-ecosystem in Egypt’s Western Desert. Ann Agric Sci 60:361–372

    Article  Google Scholar 

  30. Enneb H, Belkadhi A, Ferchichi A (2015) Changes in henna (Lawsonia inermis L.) morphological traits under different deficit irrigations in the southern Tunisia. Plant Science Today 2:2–6

    Article  Google Scholar 

  31. Fakhry A (1973) The Oases of Egypt: Siwa Oasis. The American University in Cairo Press, Egypt

    Google Scholar 

  32. Gebauer J (2005) Plant species diversity of home gardens in El Obeid, central Sudan. J Agric Rural Dev Trop Subtrop 106(2):97–103

    Google Scholar 

  33. Hajlaoui MR, Hamza N, Gargouri S, Guermech A (2001) Apparition en Tunisie de Fusarium oxysporum f.sp. radicis-lycopersici, agent de la pourriture des racines et du collet de la tomate. Bulletin OEPP/EPPO 31:505-507

  34. Hajlaoui MR, Mnari-Hattab M, Sayeh M, Zarrouk I, Jemmali A, Koike ST (2015) First report of Macrophomina phaseolina causing charcoal rot of strawberry in Tunisia. New Dis Rep 32:14. https://doi.org/10.5197/j.2044-0588.2015.032.014

    Article  Google Scholar 

  35. Hall SJG (2016) Effective population sizes in cattle, sheep, horses, pigs and goats estimated from census and herd-book data. Animal 10:1778–1785

    Article  Google Scholar 

  36. Hamamouche MF, Kuper M, Amichi H, Lejars C, Ghodbani T (2018) New reading of Saharan agricultural transformation: Continuities of ancient oases and their extensions (Algeria). World Dev 107:210–223

    Article  Google Scholar 

  37. Heim de Balsa H, Mayaud N (1962) Les Oiseaux du Nord-Ouest de l’Afrique. Lechevalier, Paris

  38. Hejda M, Pysek P, Jarosík V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x

    Article  Google Scholar 

  39. Kamo K, Vacharangkura T, Tiyanon S, Viriyabuncha C, Nimpila S, Doangsrisen B (2002) Plant species diversity in tropical planted forests and implication for restoration of forest ecosystems in Sakaerat, northeastern Thailand. Japan Int Res Center Agric Sci 36(2):111–118

    Google Scholar 

  40. Kassah A (1996) Les Oasis Tunisiennes, Aménagement Hydro-agricole et Développement en Zone Aride. Centre d’Études et de Recherches Économiques et Sociales de Tunis, Tunisia

  41. Kouki K, Bouhaouach H (2009) Study of traditionnal oasis Chenini Gabès in southern east of Tunisia. Tropicultura 27:93–97

    Google Scholar 

  42. Leroy G, Mary-Huard T, Verrier E, Danvy S, Charvolin E, Danchin-Burge C (2013) Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse. Genet Sel Evol 45:1. https://doi.org/10.1186/1297-9686-45-1

    Article  Google Scholar 

  43. Malavasi M, Santoro R, Cutini M, Acosta ATR, Laura Carranza M (2016) The impact of human pressure on landscape patterns and plant species richness in Mediterranean coastal dunes. Plant Biosystems 150:73–82. https://doi.org/10.1080/11263504.2014.913730

  44. Malik ZA, Bhatt AB (2015) Phytosociological analysis of woody species in Kedarnath Wildlife Sanctuary and its adjoining areas in Western Himalaya, India. J For Environ Sci 31:149–163

    Google Scholar 

  45. Margalef R (1968) Perspectives in Ecological Theory. University of Chicago Press, US, Chicago

    Google Scholar 

  46. Matrood AAA, Ramírez Valdespino CA, Al-Waeli MA, Khrieba MI, Rhouma A (2021) Pathogenicity and chemical control of Alternaria sp. on date palm (Phoenix dactylifera L.). Plant Science Today 8:386–391. https://horizonepublishing.com/journals/index.php/PST/article/view/1147

  47. Matrood AAA, Rhouma A (2021) Penicillium and Aspergillus species characterization: Adaptation to environmental factors and sensitivity to aqueous medicinal plants extracts. Rev Plant Stud 8:1–11. https://doi.org/10.18488/journal.69.2021.81.1.11

    Article  Google Scholar 

  48. Medina ES, Vásquez AI, Moreno MP, Torres-González A (2015) Island effect on diversity, abundance and vegetation structure in the Chocó Region. Acta Botanica Brasilica 29(4):509–515. https://doi.org/10.1590/0102-33062015abb0154

    Article  Google Scholar 

  49. Metaferia F, Cherenet T, Gelan A et al (2011) A Review to improve estimation of livestock contribution to the national GDP. MoFED and MOA. Accessed 26 June 2020 https://hdl.handle.net/10568/24987

  50. Mwaura F, Kaburu HM (2009) Spatial variability in woody species richness along altitudinal gradient in a lowland-dryland site, Lokapel Turkana, Kenya. Biodivers Conserv 18:19–32

    Article  Google Scholar 

  51. Naidu MT, Kumar OA (2016) Tree diversity, stand structure, and community composition of tropical forests in Eastern Ghats of Andhra Pradesh, India. J Asia Pac Biodivers 9:328–334

    Article  Google Scholar 

  52. Namsi A, Gargouri S, Rabaoui A, Mokhtar N, Takrouni ML, Moretti A, Masiello M, Touil S, Dieb L, Werbrouck SPO (2019) First report of leaf blight caused by Alternaria mali and A. arborescens on date palm (Phoenix dactylifera) in Tunisia. Plant Dis 103:2962–2962. https://doi.org/10.1094/PDIS-05-19-1121-PDN

  53. Nasraoui B (1991) Principales maladies fongiques de trois légumineuses alimentaires dans la region du kef (Tunisie). Tropicultura 9:5-52

  54. Neji M, Serbaji MM, Hardy O et al (2018) Floristic diversity and vegetation patterns along disturbance gradient in arid coasts in southern Mediterranean: Case of the Gulf of Gabes, southern Tunisia. Arid Land Res Manag 32:291–315

    Article  Google Scholar 

  55. Osman AK, Al-Ghamdi F, Bawadekji A (2014) Floristic diversity and vegetation analysis of Wadi Arar: A typical desert Wadi of the Northern Border region of Saudi Arabia. Saudi J Biol Sci 21:554–565

    Article  Google Scholar 

  56. Pausas JG, Austin MP (2001) Patterns of plant species richness in relation to different environments: An appraisal. J Veg Sci 12:153–166

    Article  Google Scholar 

  57. Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  58. Rhouma A (2017) L'oasis de Chott Sidi Abdel Salam, Gabés, Tunisie: Réalités et défis. Editions universitaires européennes, Germany

  59. Rhouma A, Ben Salem I, M’Hamdi M, Boughalleb-M’Hamdi N (2018) Antagonistic potential of certain soilborne fungal bioagents against Monosporascus root rot and vine decline of watermelon and promotion of its growth. Nov Res Microbiol J 2:85–100. https://doi.org/10.21608/NRMJ.2018.17864

    Article  Google Scholar 

  60. Rhouma A, Ben-Salem I, M’hamdi M, Boughalleb-M’hamdi N (2019) Relationship study among soils physico-chemical properties and Monosporascus cannonballus ascospores densities for cucurbit fields in Tunisia. Eur J Plant Pathol 153:65–78

    Article  Google Scholar 

  61. Rhouma A, Mougou I, Rhouma H (2020) Determining the pressures on and risks to the natural and human resources in the Chott Sidi Abdel Salam oasis, southeastern Tunisia. Euro-Mediterr J Environ Integr 5:37. https://doi.org/10.1007/s41207-020-00176-w

    Article  Google Scholar 

  62. Salama F, El-Ghani MA, Gadallah M, El-Naggar SA, Amro A (2016) Characteristics of desert vegetation along four transects in the arid environment of southern Egypt. Turk J Bot 40:59–73

    Article  Google Scholar 

  63. Salama F, El-Ghani MA, Amro AAER, Gaafar AES, Abd El-Galil AAEM (2018) Vegetation dynamics and species diversity in a Saharan oasis, Egypt. Not Sci Biol 10(3):363–372. https://doi.org/10.15835/nsb10310296

    Article  Google Scholar 

  64. Santoro A, Venturi M, Ben Maachia S, Benyahia F, Corrieri F, Piras F, Agnoletti M (2020) Agroforestry heritage systems as agrobiodiversity hotspots. The Case of the Mountain Oases of Tunisia. Sustainability 12(10):40–54

    Article  Google Scholar 

  65. Selmi S (2000) Données nouvelles sur les avifaunes des oasis du sud tunisien. Alauda 68:25-36

  66. Servonnet J, Laffite F (1888) En Tunisie, Le golfe de Gabès en 1888. Challamel et Cie, Paris

  67. Sghaier M (1995) Les agrosystèmes de production oasiens et leur rôle socio-économique, cas des oasis tunisiennes. In Coude-Gaussen G, Rognon P (ed) Désertification et Aménagement au Maghreb. L’Harmattan, Paris, pp. 203-213

  68. Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana, United States of America

  69. Singh S, Malik ZA, Sharma CM (2016) Tree species richness, diversity, and regeneration status in different oak (Quercus spp.) dominated forests of Garhwal Himalaya, India. J Asia Pac Biodivers 9:293–300

    Article  Google Scholar 

  70. Tackholm V (1974) Students’ Flora of Egypt. Publ. Cairo Univ. Printing by Cooperative Printing Company Beirut, Beirut

  71. Wu B, Hussain M, Zhanga W, Stadlerb M, Liua X, Xianga M (2019) Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10(3):127–140. https://doi.org/10.1080/21501203.2019.1614106

    Article  Google Scholar 

  72. You H, Jin H, Khaldi A, Kwak M, Lee T, Khaine I et al (2016) Plant diversity in different bioclimatic zones in Tunisia. J Asia Pac Biodivers 9(1):56–62

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the review editor and the anonymous reviewers for their helpful comments and suggestions to improve the clarity of the research paper.

Funding

We did not receive financial support; we used our facilities available.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdelhak Rhouma.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rhouma, A., Mougou, I., Bedjaoui, H. et al. Ecology in Chott Sidi Abdel Salam oasis, southeastern Tunisia: cultivated vegetation, fungal diversity and livestock population. J Coast Conserv 25, 52 (2021). https://doi.org/10.1007/s11852-021-00837-0

Download citation

Keywords

  • Gabes oasis
  • Biodiversity
  • Fungal
  • Conservation
  • Plant
  • Livestock