Skip to main content

Advertisement

Log in

Evaluation of geomorphic changes and retreat rates of a coastal pyroclastic cliff in the Campi Flegrei volcanic district, southern Italy

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

Geomorphic evolution of sea cliffs has significant impact on coastal settlements worldwide, so that evaluation of cliff instability processes, failure factors, and retreat rates involves a growing number of scientists for coastal risk and management purposes. Aerial photogrammetry and lidar are among the most used techniques for topographic characterization and geomorphic monitoring of coastal environments. A crucial role in the combined use of such techniques is the evaluation of different spatial accuracy and co-registration between derived terrain models, so that a robust error analysis is required. In this study, we present a change detection analysis of the Torrefumo coastal cliff, in the Campi Flegrei volcanic area (Southern Italy). Aerial images taken in 1956 and 1974, processed through digital photogrammetry, and an airborne lidar point cloud acquired in 2008 were used to produce Digital Elevation Models of the cliff. The analysis was based on the multi-temporal comparison of these models and included the calculation of volumetric changes and average retreat rates of the cliff face with reference to the 1956–1974 and 1974–2008 time intervals. The spatially variable elevation uncertainty of each Digital Elevation Model was evaluated with a probabilistic approach based on the fuzzy set theory. The results of this study showed significant eroded volumes during the period 1956–1974 and relatively smaller volumes in the 1974–2008 time span, with mean annual retreat rates of 1.2 m/year and 0.17 m/year, respectively. We infer that the significant decrease of erosion characterizing the second period was induced by the sheltering effect at the base of the cliff produced by the construction of a seawall in the early 80’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams JC, Chandler JH (2002) Evaluation of LiDAR and medium scale photogrammetry for detecting soft-cliff coastal change. Photogramm Rec 17:405–418

    Article  Google Scholar 

  • ADB (2009) Progetto di Piano Stralcio per la Difesa delle Coste. Available at: http://www.adbcampaniacentrale2.it/

  • Beneduce P, D’Elia G, Guida M (1988) Morfodinamica dei versanti dell'area flegrea (Campania): erosione in massa ed erosione lineare. Mem Soc Geol It 41:949–961

    Google Scholar 

  • Bird ECF (1996) Beach Management. John Wiley, New York

    Google Scholar 

  • Bird ECF (2016) Coastal cliffs: morphology and management. Springer, Switzerland

    Book  Google Scholar 

  • Bird ECF, Rosengren NJ (1984) The changing coastline of the Krakatau Islands, Indonesia. Z Geomorph N F 28(3):347–366

    Google Scholar 

  • Borges P, Andrade C, Freitas C (2002) Dune, bluff and beach erosion due to exhaustive sand mining – the case of Santa Bárbara, S. Miguel (Azores, Portugal). J Coast Res 36:89–95

    Article  Google Scholar 

  • Brasington J, Langham J, Rumsby B (2003) Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 53(3–4):299–316

    Article  Google Scholar 

  • Bray MJ, Hooke JM (1997) Prediction of soft-cliff retreat with accelerating sea-level rise. J Coast Res 13(2):453–467

    Google Scholar 

  • Cambers G (1976) Temporal scales in coastal erosion systems. Trans Inst Br Geogr 1(2):246–256

    Article  Google Scholar 

  • Cruz de Oliveira SC, Catalão J, Ferreira Ó, Dias JMA (2008) Evaluation of cliff retreat and beach nourishment in southern Portugal using photogrammetric techniques. J Coast Res 24(4C):184–193

    Article  Google Scholar 

  • De Natale G, Troise C, Pingue F, Mastrolorenzo G, Pappalardo L, Boschi E (2006) The Campi Flegrei caldera: unrest mechanisms and hazards. In Troise C, De Natale G, Kilburn CRJ (eds) mechanisms of activity and unrest at large calderas. Geol Soc Lond, Spec Publ 269:25–45

    Article  Google Scholar 

  • De Rose RC, Basher LR (2011) Measurement of river bank and cliff erosion from sequential LIDAR and historical aerial photography. Geomorphology 126:132–147

    Article  Google Scholar 

  • Dewez T, Leroux J, Morelli S (2016) Cliff collapse hazard from repeated multicopter uav acquisitions: return on experience. Int Arch Photogramm Remote Sens Spat Inf Sci XLI-B5:805–811

    Article  Google Scholar 

  • Di Girolamo P, Ghiara MR, Lirer L, Munno R, Rolandi G, Stanzione D (1984) Vulcanologia e petrologia dei Campi Flegrei. B Soc Geol It 103:349–413

    Google Scholar 

  • Di Vito MA, Lirer L, Mastrolorenzo G, Rolandi G, Scandone R (1985) Volcanological map of Campi Flegrei. University of Naples, Ministero Protezione Civile

    Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, De Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanic and deformational history of the Campi Flegrei caldera in the past 12 ka. J Volcanol Geotherm Res 91:221–246

    Article  Google Scholar 

  • Doehne E (2002) Salt weathering: a selective review. Geological Society, London, Special Publications 205(1):51–64

    Article  Google Scholar 

  • Dvorak J, Mastrolorenzo G (1991) The mechanism of recent vertical crustal movements in Campi Flegrei caldera, southern Italy. Geol Soc Am Spec Pap 263:1–45

    Google Scholar 

  • Earlie CS, Masselink G, Russell PA, Shail RK (2013) Sensitivity analysis of the methodology for quantifying cliff erosion using airborne LiDAR – examples from Cornwall, UK. J Coast Res 65:470–475

    Article  Google Scholar 

  • Earlie CS, Masselink G, Russell PE, Shail RK (2015) Application of airborne LiDAR to investigate rates of recession in rocky coast environments. J Coast Conserv 19(6):831–845

    Article  Google Scholar 

  • Esposito G, Fortelli A, Grimaldi GM, Matano F, Sacchi M (2015) I fenomeni di flash flood nell’area costiera di Pozzuoli (Napoli, Italia): risultati preliminari sull’analisi dell’evento del 6 novembre 2011. Rend Online Soc Geol It 34:74–85

    Google Scholar 

  • Esposito G, Salvini R, Danzi M, Matano F, Sacchi M, Seddaiu M, Somma R, Tammaro U, Troise C, De Natale G (2016) 3D change detection analysis of a coastal landslide performed by multi-temporal point cloud comparison. In: Proceedings of the 2nd virtual geoscience conference, (Bergen, Norway), pp 5–6

    Google Scholar 

  • Esposito G, Mastrorocco G, Salvini R, Oliveti M, Starita P (2017a) Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Env Earth Sc 76:103

    Article  Google Scholar 

  • Esposito G, Salvini R, Matano F, Sacchi M, Danzi M, Somma R, Troise C (2017b) Multitemporal monitoring of a coastal landslide through sfm-derived point cloud comparison. Photogramm Rec 32(160):459–479

    Article  Google Scholar 

  • Fabris M, Pesci A (2005) Automated DEM extraction in digital aerial photogrammetry: precisions and validation for mass movement monitoring. Annals of. Geophysics 48(6):973–988

    Google Scholar 

  • Furlani S, Pappalardo M, Gomez-Pujol L, Chelli A (2014) The rock coast of the Mediterranean and black seas. In: Kennedy DM, Stephenson WJ, Naylor LA (eds) Rock coast geomorphology: a global synthesis. Geological society, London memoirs, 40, pp 89–123

    Google Scholar 

  • Hampton MA, Griggs GB (2004) Formation, evolution, and stability of coastal cliffs - status and trends. US Geol Surv Prof Pap 1693

  • Hapke CJ, Reid D (2007) National Assessment of shoreline change, part 4: historical coastal cliff retreat along the California coast. U.S. Geological Survey Open-file Report:2007–1133

  • Hurst MD, Rood DH, Ellis MA, Anderson RS, Dornbusch U (2016) Recent acceleration in coastal cliff retreat rates on the south coast of great Britain. PNAS 113(47):13336–13341

    Article  Google Scholar 

  • Hutchinson MF (1989) A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J Hydrol 106:211–232

    Article  Google Scholar 

  • Hutchinson MF, Xu T, Stein JA (2011) Recent progress in the ANUDEM elevation gridding procedure. In: Hengel T, Evans IS, Wilson JP, Gould M (eds) Geomorphometry 2011, Redlands, pp 19–22

    Google Scholar 

  • Ietto F, Perri F, Filomena L (2015) Weathering processes in volcanic tuff rocks of the "Rupe di Coroglio" (Naples, southern Italy): Erosion-rate estimation and weathering forms. Rend Online Soc Geol It 33:53–56

    Google Scholar 

  • James TD, Murray T, Barrand NE, Barr SL (2006) Extracting photogrammetric ground control from lidar DEMs for change detection. Photogramm Rec 21(116):312–328

    Article  Google Scholar 

  • Jasiewicz J (2010) A new GRASS GIS fuzzy inference system for massive data analysis. Comput Geosci 37:1525–1531. https://doi.org/10.1016/j.cageo.2010.09.008

    Article  Google Scholar 

  • Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Kuhn D, Prüfer S (2014) Coastal cliff monitoring and analysis of mass wasting processes with the application of terrestrial laser scanning: a case study of Rügen, Germany. Geomorphology 213:153–165

    Article  Google Scholar 

  • Lague D, Brodu N, Leroux J (2013) Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J Photo Remote Sens 82:10–26

    Article  Google Scholar 

  • Lentz EE, Hapke CJ, Stockdon HF, Hehre RE (2013) Improving understanding of near-term barrier island evolution through multi-decadal assessment of morphologic change. Mar Geol 337:125–139

    Article  Google Scholar 

  • Lim M, Petley DN, Rosser NJ, Allison RJ, Long AJ, Pybus D (2005) Combined digital photogrammetry and time-of flight laser scanning for monitoring cliff evolution. Photogramm Rec 20(110):109–129

    Article  Google Scholar 

  • Lim DI, Choi JY, Jung HS (2009) Sea-cliff erosion and retreat in semi-enclosed macrotidal embayment: Hampyung Bay, West coast of Korea. J Coast Res SI(56):732–736

  • Lim M, Rosser NJ, Petley DN, Keen M (2011) Quantifying the controls and influence of tide and wave impacts on coastal rock cliff erosion. J Coast Res 27:46–56

    Article  Google Scholar 

  • Liu X, Zhang Z, Peterson J, Chandra S (2007) LiDAR-derived high quality ground control information and DEM for image Orthorectification. GeoInformatica 11:37–53

    Article  Google Scholar 

  • Mackey BH, Roering JJ (2011) Sediment yield, spatial characteristics, and the long-term evolution of active earthflows determined from airborne LiDAR and historical aerial photographs, Eel River, California. Geol Soc Am Bull 123:1560–1576

    Article  Google Scholar 

  • Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-machine. Studies 7:1–13

    Google Scholar 

  • Marques FMSF (2009) Sea cliff instability hazard prevention and planning: examples of practice in Portugal. J. Coast Res SI 56:856–860

    Google Scholar 

  • Martino S, Mazzanti P (2014) Integrating geomechanical surveys and remote sensing for sea cliff slope stability analysis: the Mt. Pucci case study (Italy). Nat Hazards Earth Syst Sci 14:831–848

    Article  Google Scholar 

  • Matano F, Pignalosa A, Marino E, Esposito G, Caputo T, Somma R, Sacchi M, Troise C, De Natale G (2015) Laser scanning application for Geostructural analysis of tuffaceous coastal cliffs: the case of Punta Epitaffio, Pozzuoli Bay, Italy. Eur J Remote sens 48:615–637

    Article  Google Scholar 

  • Matano F, Iuliano S, Somma R, Marino E, Del Vecchio U, Esposito G, Molisso F, Scepi G, Grimaldi GM, Pignalosa A, Caputo T, Troise C, De Natale G, Sacchi M (2016) Geostructure of Coroglio tuff cliff, Naples (Italy) derived from terrestrial laser scanner data. Journal of maps 12(3):407–421

    Article  Google Scholar 

  • Mitasova H, Overton M, Recalde J, Bernstein D, Freeman C (2009) Raster-based analysis of coastal terrain dynamics from multitemporal lidar data. J Coast Res 25:507–514

    Article  Google Scholar 

  • Moore LJ, Benumof BT, Griggs GB (1999) Coastal Erosion hazards in Santa Cruz and San Diego counties, California. J Coast Res Spec Issue 28:121–139

    Google Scholar 

  • Moore R, Fish PR, Koh A, Trivedi D, Lee A (2003) Coastal change analysis: a quantitative approach using digital maps, aerial photographs and LiDAR. In: Proceedings of the International Conference on Coastal Management, Institution of Civil Engineers, Brighton. https://doi.org/10.1680/icocm2003.32552.0015

  • Obu J, Lantuit H, Grosse G, Günther F, Sachs T, Helm H, Fritz M (2016) Coastal erosion and mass wasting along the Canadian Beaufort Sea based on annual airborne LiDAR elevation data. Geomorphology in press

  • Orsi G, De Vita S, Di Vito M (1996) The restless resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214

    Article  Google Scholar 

  • Overduin PP, Strzelecki MC, Grigoriev MN, Couture N, Lantuit H, St-Hilaire-Gravel D, Günther F, Wetterich S (2014) Coastal changes in the Arctic. In: Martini IP, Wanless HR (eds) Sedimentary coastal zones from high to low latitudes: similarities and differences. Geological Society, London, Special Publications, vol 388, pp 103–129

    Google Scholar 

  • Passalacqua P, Belmont P, Staley DM, Simley JD, Arrowsmith JR, Bode CA, Crosby C, Delong SB, Glenn NF, Kelly SA, Lague D, Sangireddy H, Schaffrath K, Tarboton DG, Wasklewicz T, Wheaton JM (2015) Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: a review. Earth-Sci Rev 148:174–193

    Article  Google Scholar 

  • Perrotta A, Scarpati C (1994) The dynamics of the breccia Museo eruption (Campi Flegrei, Italy) and the signifi cance of spatter clasts associated with lithic breccias. J Volcanol Geotherm Res 59:335–355

    Article  Google Scholar 

  • Perrotta A, Scarpati C, Luongo G, Morra V (2011) Stratigraphy and Volcanological evolution of the southwestern sector of Campi Flegrei and Procida Island, Italy. Geol Soc Am Spec Pap 464:171–191

    Google Scholar 

  • Pulighe G, Fava F (2013) DEM extraction from archive aerial photos: accuracy assessment in areas of complex topography. Eur J Remote Sens 46:363–378

    Article  Google Scholar 

  • Pye K, Blott SJ (2015) Spatial and temporal variations in soft-cliff erosion along the Holderness coast, east riding of Yorkshire, UK. J Coast Conserv 19:785–808

    Article  Google Scholar 

  • Quartau R, Tempera F, Mitchell NC, Pinheiro LM, Duarte H, Bates R, Monteiro JH (2012) Morphology of the Faial Island shelf (Azores): the interplay between volcanic, erosional, depositional, tectonic and mass wasting processes. Geochem Geophys Geosyst 13. https://doi.org/10.1029/2011GC003987

    Article  Google Scholar 

  • Ramalho RS, Quartau R, Trenhaile AS, Mitchell NC, Woodroffe CD, Avila SP (2013) Coastal evolution on volcanic oceanic islands: a complex interplay between volcanism, erosion, sedimentation, sea-level change and biogenic production. Earth-Sci Rev 127:140–170

    Article  Google Scholar 

  • Reshmidevi TV, Eldho TI, Jana R (2009) A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds. Agric Syst 101:101–109

    Article  Google Scholar 

  • Richards KS, Lorriman NR (1987) Basal erosion and mass movement. In: Anderson MG, Richards KS (eds) Slope stability. Wiley, Chichester, pp 331–357

    Google Scholar 

  • Rosengren NJ (1985) The changing outlines of Sertung, Krakatau lslands. Indonesia Z Geomorph (NF) 65:105–119

    Google Scholar 

  • Rosi M, Sbrana A (1987) The Phlegrean Fields. Consiglio Nazionale delle Ricerche, Quaderni de “La Ricerca Scientifica”, Roma

  • Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q J Eng Geol Hydrogeol 38:363–375

    Article  Google Scholar 

  • Sacchi M, Caccavale M, Matano F, Esposito G, Caputo T, Somma R, Troise C, De Natale G, Minardo A, Zeni L, Zeni G (2016) Application of an integrated monitoring system for rock failures in the Coroglio tuff cliff (Naples, Italy). In Aversa S, Cascini L, Picarelli L, Scavia C (eds) Landslides and Engineered Slopes. Experience, Theory and Practice. CRC press/Balkema, Leiden, The Netherlands, pp 1775–1782

    Google Scholar 

  • Salvini R, Fantozzi PL, Francioni M, Riccucci S, Bonciani F, Mancini S (2011) Stability analysis of “Grotta delle Felci” cliff (Capri Island, Italy): structural, engineering-geological, photogrammetric surveys and laser scanning. Bull Eng Geol Environ 70:549–557

    Article  Google Scholar 

  • Somma R, Matano F, Marino E, Caputo T, Esposito G, Caccavale M, Carlino S, Iuliano S, Mazzola S, Molisso F, Sacchi M, Troise G, De Natale G (2015) Application of laser scanning for monitoring coastal cliff instability in the Pozzuoli Bay, Coroglio site, Posillipo Hill, Naples. Engineering Geology for Society and Territory 5:687–690

    Google Scholar 

  • Spetsakis ME, Aloimonos Y (1991) A multi-frame approach to visual motion perception. Int J Comput Vis 6:245–255

    Article  Google Scholar 

  • Sunamura T (1988) Projection of future coastal cliff recession under sea-level rise induced by the greenhouse effect: Nii-Jima Island, Japan. Transactions, Japanese Geomorphological Union 9:17–33

    Google Scholar 

  • Sunamura T (1992) Geomorphology of rocky coasts. Wiley, New York

    Google Scholar 

  • Sunamura T (2015) Rocky coast processes: with special reference to the recession of soft rock cliffs. Proc Jpn Acad Ser B Phys Biol Sci 91(9):481–500

    Article  Google Scholar 

  • Suwardi A, Rosengren NJ (1983) Coastal changes on Anak Krakatau and Sertung Island. In: Bird ECF, Soegiarto A, Soegiarto KA, Rosengren N (eds) Proceedings of the workshop on coastal resources Mangement of Krakatau and the Sunda Strait region, Indonesia. The Indonesian Institute of Science and the United Nations University, Jakarta, pp 214–233

    Google Scholar 

  • Thornton EB, Sallenger A, Sesto lC, Egley L, McGee T, Parsons R (2006) Sand mining impacts on long-term dune erosion in southern Monterey Bay. Mar Geol 229:45–58

    Article  Google Scholar 

  • Trenhaile AS (1987) The geomorphology of rock coasts. Oxford University Press, Oxford

    Google Scholar 

  • Trenhaile AS (2014) Climate change and its impact on rock coasts. Geol Soc Lond Mem 40(1):7–17

    Article  Google Scholar 

  • Wangensteen B, Eiken T, Ødegård RS, Sollid JL (2007) Measuring coastal cliff retreat in the Kongsfjorden area, Svalbard, using terrestrial photogrammetry. Polar Res 26:14–21

    Article  Google Scholar 

  • Warrick JA, Ritchie AC, Adelman G, Adelman K, Limber PW (2017) New techniques to measure cliff change from historical oblique aerial photographs and structure-from-motion photogrammetry. J Coast Res 33(1):39–55

    Article  Google Scholar 

  • Wellman HW, Wilson AT (1965) Salt weathering, a neglected geological erosive agent in coastal and arid environments. Nature 205:1097–1098

    Article  Google Scholar 

  • Wheaton JM (2008) Uncertainty in morphological sediment budgeting of rivers. University of Southampton, PhD Thesis

    Google Scholar 

  • Wheaton JM, Brasington J, Darby SE, Sear D (2010a) Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surf Process Landf 35(2):136–156

    Google Scholar 

  • Wheaton JM, Brasington J, Darby SE, Merz J, Pasternack GB, Sear D, Vericat D (2010b) Linking geomorphic changes to salmonid habitat at a scale relevant to fish. River Res Appl 26(4):469–486

    Article  Google Scholar 

  • Xhardé R, Long BF, Forbes DL (2006) Accuracy and limitations of airborne LiDAR surveys in coastal environments. In: Proceedings of the Geoscience and Remote Sensing Symposium 2006, (Denver, USA), pp 2412–2415

  • Yokota S, Iwamatsu A (1999) Weathering distribution in a steep slope of soft pyroclastic rocks as an indicator of slope instability. Eng Geol 55:57–68

    Article  Google Scholar 

  • Young AP, Ashford SA (2006) Application of airborne LIDAR for seacliff volumetric change and beach-sediment budget contributions. J Coast Res 22:307–318

    Article  Google Scholar 

  • Zandbergen PA (2011) Characterizing the error distribution of LIDAR elevation data. Int J Remote Sens 32(2):409–430

    Article  Google Scholar 

  • Zhang K, Whitman D, Leatherman S, Robertson W (2005) Quantification of beach changes caused by hurricane Floyd along Florida’s Atlantic coast using airborne laser surveys. J Coast Res 21:123–134

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this publication was supported by grants of the MIUR-ITEMS project (Innovative Technologies for Emergency Management Systems) of the Italian Institute of Geophysics and Volcanology (INGV) and the Research Project PON MONICA (contract no. PON01_01525). We are thankful to the Metropolitan City of Naples - Geographic Information System Service for providing lidar data, and to three anonymous reviewers for their critical revisions and suggestions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Esposito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, G., Salvini, R., Matano, F. et al. Evaluation of geomorphic changes and retreat rates of a coastal pyroclastic cliff in the Campi Flegrei volcanic district, southern Italy. J Coast Conserv 22, 957–972 (2018). https://doi.org/10.1007/s11852-018-0621-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11852-018-0621-1

Keywords

Navigation