Skip to main content

Rapid losses of intertidal salt marshes due to global change in the Gironde estuary (France) and conservation implications for marshland passerines

Abstract

We analysed coastline movements between 2000 and 2016 along the 24.5 km of the mesohaline region of the North bank of the Gironde estuary (France). This sector is identified as hosting the largest expanse of salt marshes of the estuary and as an important breeding and stopover site for different marshland passerines of conservation concern. Our results from the study area reveal an average shore retreat of 14.74 ± 0.50 m over the period, corresponding to a loss of 49.96 ha of intertidal wetlands (i.e. 2.04 ha per kilometer of coastline) and reaching on average of more than 30 m for 42% of the coastline. This erosion dynamic, explained by a significant perturbation of the estuary’s hydro-sedimentary dynamic (due to decreases in freshwater discharges and relative sea level rise) highlights the rapid disruption that can occur in estuarine eco-complexes in response to global change. Given the impacts that estuarine intertidal wetland losses have on carrying capacity for marshland passerines, experimental management approaches are being tested in the study area to compensate for losses already observed and to anticipate those expected. These approaches reveal in particular that partial reconnection of agricultural polders to tide influences with a regulation system for water ingress may allow interesting trade-off between maintaining polders with agricultural activities such as grazing and conservation plans for vegetation of intertidal salt marshes exploitable by marshland passerines.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Baird D, Evans PR, Milne H, Pienkowski MW (1985) Utilization by shorebirds of benthic invertebrate production in intertidal areas. Oceanogr Mar Biol 23:575–597

    Google Scholar 

  • Beck MW et al (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 51:633–641

    Article  Google Scholar 

  • Blankespoor B, Dasgupta S, Laplante B (2014) Sea-level rise and coastal wetlands. Ambio 43:996–1005

    Article  Google Scholar 

  • Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie JC, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328(5982):1164–1168. https://doi.org/10.1126/science.1187512

    Article  Google Scholar 

  • Canty A, Ripley B (2017) Boot: Bootstrap R (S-Plus) Functions. R package version 1.3-20. https://cran.r-project.org/web/packages/boot/citation.html

  • Costanza RR et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260. https://doi.org/10.1038/387253a0

    Article  Google Scholar 

  • Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M (2009) Forecasting the effects of accelerated sea level rise on tidal marsh ecosystem services. Front Ecol Environ 7(2):73–78. https://doi.org/10.1890/070219

    Article  Google Scholar 

  • Crosby SC, Sax DF, Palmer ME, Booth HS, Deegan LA, Bertness MD, Leslie HM (2016) Salt marsh persistence is threatened by predicted sea-level rise. Estuar Coast Shelf Sci 181:93–99. https://doi.org/10.1016/j.ecss.2016.08.018

    Article  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their applications. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511802843

    Book  Google Scholar 

  • DREAL Midi-Pyrénées (2012) Note d'enjeux préalable aux travaux des groupes sur l'adaptation aux changements climatiques dans les Pyrénées, pp 7

  • Eaucéa (2008) Evaluation des impacts du changement climatique sur l’estuaire de la Gironde et prospective a moyen terme, phase 1: analyse des enjeux liés à l’eau, pp 120

  • Edgar GJ, Barrett NS, Graddon DJ, Last PR (2000) The conservation significance of estuaries: a classification of Tasmanian estuaries using ecological, physical and demographic attributes as a case study. Biol Conserv 92(3):383–397. https://doi.org/10.1016/S0006-3207(99)00111-1

    Article  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26. https://doi.org/10.1214/aos/1176344552

    Article  Google Scholar 

  • Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82(397):171–185. https://doi.org/10.1080/01621459.1987.10478410

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. In: Monographs on statistics and applied probability (n°57). Chapman and Hall/CRC Press, London, pp 456

  • Ehrlich PR (1988) The loss of diversity: causes and consequences. In: Wilson EO, Peter FM (eds) Biodiversity. National Academies Press, Washington, DC, pp 21–27

    Google Scholar 

  • Foucher J, Dugué H, Ozarowska A, Wojczulanis-Jakubas K, Heinrich F, Lefebvre M, Archer E (2011) Bilan et analyse des données de la station de baguage de Donges Est pour l’année 2011. ACROLA – Association pour la Connaissance et la Recherche Ornithologique Loire et Atlantique

  • Gerdol V, Hughes RG (1993) Effect of the amphipod Corophium volutator on the colonisation of mud by the halophyte Salicornia europaea. Mar Ecol Prog Ser 97:61–69. https://doi.org/10.3354/meps097061

    Article  Google Scholar 

  • Goeldner-Gianella L (2007a) Perceptions and attitudes towards de-polderisation in Europe: a comparison of five opinion surveys. J Coast Res 23:1218–1230

    Article  Google Scholar 

  • Goeldner-Gianella L (2007b) Dépoldériser en Europe occidentale - De-polderizing in Western Europe. Annales de géographie, 2007/4 (n° 656), pp 339–360

  • Gonin J, Mercier F (2016) Etude de la migration postnuptiale du Phragmite aquatique Acrocephalus paludicola sur les RNN de la Baie de l’Aiguillon et de la Casse de la Belle Henriette. LPO Charente-Maritime, Rochefort

    Google Scholar 

  • Greenberg R, Maldonado JE, Droege S, McDonald MV (2006) Tidal marshes: a global perspective on the evolution and conservation of their terrestrial vertebrates. Bioscience 56(8):675–685.

  • Hérault T, Collet H (2010) Dépoldérisation, la reconquête du fleuve sur l'ancien polder de Mortagne-sur-Gironde. Le Courrier de la. Nature 255:26–32

    Google Scholar 

  • Hinrichsen D (1998) Coastal waters of the world: trends, threats, and strategies. Island Press, Washington, DC

    Google Scholar 

  • Hughes RG (2004) Climate change and loss of saltmarshes: consequences for birds. Ibis 146:21–28. https://doi.org/10.1111/j.1474-919X.2004.00324.x

    Article  Google Scholar 

  • Jiguet F, Chiron F, Dehorter O, Dugué H, Provost P, Musseau R, Guyot G, Latraube F, Fontanilles P, Séchet E, Laignel J, Gruwier X, Le Névé A (2011) How many aquatic warblers do stop in France during the autumn migration? Acta Ornithol 46(2):135–142. https://doi.org/10.3161/000164511X625900

    Article  Google Scholar 

  • Kennish MJ (2002) Environmental threats and environmental future of estuaries. Environ Conserv 29:78–107

    Article  Google Scholar 

  • Kirwan ML, Temmerman S, Skeehan EE, Guntenspergen GR, Fagherazzi S (2016) Overestimation of marsh vulnerability to sea level rise. Nat Clim Chang 6(3):253–260. https://doi.org/10.1038/nclimate2909

    Article  Google Scholar 

  • Le Treut H (2013) Les impacts du changement climatique en Aquitaine: un état des lieux scientifique. Presses Universitaires de Bordeaux, LGPA-Editions, Pessac, p 365

    Google Scholar 

  • Levrault F, Brisson N, Pieri P and Bosc A (2012) Changement climatique en zone Sud-Ouest: aperçu des impacts agricoles et forestiers. In: Brisson N, Levrault F (eds) Changement climatique, agriculture et forêt en France: simulations d'impacts sur les principales espèces – Le Livre Vert du projet CLIMATOR (2007–2010). INRA, Agence Nationale de la Recherche, ADEME. pp 336

  • Marshall RM, Reinert SE (1990) Breeding ecology of seaside sparrows in a Massachusetts salt marsh. Wilson Bull 102:501–513

    Google Scholar 

  • McLusky DS, Elliott M (2004) The estuarine ecosystem: ecology, threats and management. 3rd ed. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780198525080.001.0001

    Book  Google Scholar 

  • Moulton DW, Dahl TE, Dall DM (1997) Texas coastal wetlands: status and trends, mid-1950s to early 1990s. U. S. Department of the Interior, Fish and Wildlife Service, Albuquerque, p 32

    Google Scholar 

  • Musseau R, Beslic S (2016) Définition des potentialités des espaces agricoles arrière-littoraux pour la compensation des pertes d’habitats intertidaux inhérentes aux changements globaux. Cas des prairies poldérisées reconnectées aux dynamiques tidales par échanges d’eau régulés et de l’avifaune, résultats année 2016. BioSphère Environnement, pp 11

  • Musseau R, Beslic S (2018) High densities of the French coastal endemic Bluethroat (Cyanecula svecica namnetum) revealed in intertidal reed beds and conservation perspectives towards sea level rise. Revue d’Ecologie (Terre et Vie) vol 73

  • Musseau R, Herrmann V, Kerbiriou C, Bénard S, Hérault T, Kerbiriou E, Jiguet F (2014) Ecology of aquatic warblers Acrocephalus paludicola in a fall stopover area on the Atlantic coast of France. Acta Ornithol 49(1):93–105. https://doi.org/10.3161/000164514X682922

    Article  Google Scholar 

  • Musseau R, Beslic S, Kerbiriou C (2017) Importance of intertidal wetlands for the French coastal endemic Bluethroat (Cyanecula svecica namnetum) and conservation implications in the context of global changes. Ardeola 64:325–345

    Article  Google Scholar 

  • Nicholls RJ et al (2007) Coastal systems and low lying areas. In: Parry ML et al. (ed) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 315–356

  • Pereira HM, Leadley PW, Proenca V, Alkemade R, Scharlemann JPW, Fernandez-Manjarres JF, Araujo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guenette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330(6010):1496–1501. https://doi.org/10.1126/science.1196624

    Article  Google Scholar 

  • Prater AJ (1981) Estuary birds of Britain and Ireland. Poyser, Berkhampstead

    Google Scholar 

  • Preacher KJ, Selig JP (2012) Advantages of Monte Carlo confidence intervals for indirect effects. Commun Methods Meas 6(2):77–98. https://doi.org/10.1080/19312458.2012.679848

    Article  Google Scholar 

  • Provost P, Kerbiriou C, Jiguet F (2010) Foraging range and habitat use by aquatic warblers Acrocephalus paludicola during a fall migration stopover. Acta Ornithol 45:175–180

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rands MRW, Adams WM, Bennun L, Butchart SHM, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann JPW, Sutherland WJ, Vira B (2010) Biodiversity conservation: challenges beyond 2010. Science 329(5997):1298–1303. https://doi.org/10.1126/science.1189138

    Article  Google Scholar 

  • Rilo A, Freire P, Guerreiro M, Fortunato AB, Taborda R (2013) Estuarine margins vulnerability to floods for different sea level rise and human occupation scenarios. J Coast Res 65:820–825. https://doi.org/10.2112/SI65-139.1

    Article  Google Scholar 

  • Rince Y (1983) Hydrologie et planctonologie de l'estuaire de la Loire. Rapport CSEEL 2, pp 1–53

  • Sottolichio A, Hanquiez V, Perinotto H, Sabouraud L, Weber O (2013) Evaluation of the recent morphological evolution of the Gironde estuary through the use of some preliminary synthetic indicators. J Coast Res Spec Issue 65:1224–1229

    Article  Google Scholar 

  • Spohr C (2011) Impacts à long terme du changement climatique sur le littoral métropolitain. Commissariat Général du Développement Durable, collection Etudes et documents, n°55, pp 70

  • Thieler ER, Himmelstoss EA, Zichichi JL, Ergul A (2009) Digital Shoreline Analysis System (DSAS) version 4.0 - An ArcGIS extension for calculating shoreline change. U.S. Geological Survey Open-File Report 2008–1278

  • Titus JG (1988) Greenhouse effect, sea level rise, and coastal wetlands. EPA Rep. 230-05-86-013. Environ. Prot. Agency, Washington, DC

    Google Scholar 

  • Traut BH (2005) The role of coastal ecotones: a case study of the salt marsh / upland transition zone in California. J Ecol 93(2):279–290. https://doi.org/10.1111/j.1365-2745.2005.00969.x

    Article  Google Scholar 

  • Watkinson AR, Gill JA, Hulme M (2004) Flying in the face of climate change: a review of climate change, past, present and future. Ibis 146:4–10. https://doi.org/10.1111/j.1474-919X.2004.00321.x

    Article  Google Scholar 

  • Woodward RT, Wui YS (2001) The economic value of wetland services: a meta-analysis. Ecol Econ 37(2):257–270. https://doi.org/10.1016/S0921-8009(00)00276-7

    Article  Google Scholar 

  • Yates MG, Goss-Custard JD, McGrorty S, Lakhani KH, Le V, Dit Durell SEA, Clarke RT, Rispin WE, Moy I, Yates T, Plant RA, Frost AJ (1993) Sediment characteristics, invertebrate densities and shorebird densities on the inner banks of the Wash. J Appl Ecol 30:599–614

Download references

Acknowledgements

This study was achieved thanks to financial support from the Charente-Maritime Departmental Council, the Adour-Garonne Water Agency, the French Ministry of Ecology and Sustainable Development (DREAL Poitou-Charentes and Nouvelle Aquitaine) and the French Agency for Civic Service. We particularly thank Isabelle Delacourte (LittoMatique) for her help during this work. We are grateful to the French Coastal and Lake Shore Conservation Authority and the Poitou-Charentes’ Conservatory of Natural Areas for their help during schemes we initiated to document the ecological interests of management solutions developed to reconnect inshore coastal areas to tide influences. Finally, we thank the people who assisted us during the different field works presented in this study, Greg McIvor for proofreading this paper and the anonymous reviewers who provided valuable comments that helped us to improve our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Musseau.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Musseau, R., Boutault, L. & Beslic, S. Rapid losses of intertidal salt marshes due to global change in the Gironde estuary (France) and conservation implications for marshland passerines. J Coast Conserv 22, 443–451 (2018). https://doi.org/10.1007/s11852-018-0592-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11852-018-0592-2

Keywords

  • Birds
  • Climate change
  • Coastal erosion
  • DSAS
  • Intertidal wetlands
  • Sea level rise