Skip to main content

Wildlife corridors under water: an approach to preserve marine biodiversity in heavily modified water bodies

Abstract

Coastal areas commonly consist of an environment of intense economic uses and are thus exposed to conflicts between anthropogenic activities and biodiversity. While several approaches of nature protection have been applied to the terrestrial domain, aquatic biotopes frequently still lack a good ecological state as required by EU policies (WFD and MSFD). For numerous years, the underwater world has been considered as one sphere and was neglected in the development of distinctive concepts of conservation for its variety of biotopes. This paper’s objective is the enhancement of ecological connectivity within the study area through the design of benthic wildlife corridors and a consequent sublittoral biotope network. A step-by-step approach is presented for the optimization of ecological potential in heavily modified coastal water bodies, using Kiel Fjord (Western Baltic Sea) as a case study. The procedure for the development of wildlife corridors includes defining and mapping of existing biotope types, the identification of key species for each biotope type and delineating their mobility range, the reconstruction of near-natural / pre-industrial conditions and deriving the protection priorities by comparing past with current / modified conditions. By harmonizing these scientific insights with the local land use of human society, proposals for biotope restoration and improvements can be made. In Kiel Fjord, compensation measures, obligatory for human interventions, such as construction work in the marine environment in this case, have been implemented and present an opportunity to enhance the connectivity of biotopes, thus creating wildlife corridors for their inhabitants. The composition of benthic wildlife corridors, forming a sublittoral biotope network in accordance with the present anthropogenic uses, holds potential for implementation in comparably altered coastal water bodies and integration into national and international frameworks, in anticipation of its functionality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Beier P, Loe S (1992) A checklist for evaluating impacts to wildlife movement corridors. Wildl Soc Bull 20(4):434–440

    Google Scholar 

  • Bing (2016) Bing aerial view maps. https://www.bing.com/maps. Accessed 15 Aug 2016

  • BMT Oceanica (2013) Transplanting Posidonia Seagrass in Temperate Western Australian Waters: A Practical “How To” Guide. BMT Oceanica Pty. Ltd., pp. 42. http://www.bmtoceanica.com.au/media/4865945/Seagrass Transplantation Manual_Rev0_20131024.pdf. Accessed 26 Oct 2016

  • Bond M (2003) Principles of wildlife corridor design. Center for Biological Diversity. pp. 4

  • Bondo-Christensen P, Díaz Almela E, Diekmann O (2005) Can transplanting accelerate the recovery of seagrasses? In: Borum J, Duarte CM, Krause-Jensen D, Greve TM (eds.) European seagrasses: an introduction to monitoring and management. EU project monitoring and managing of European Seagrasses (M&MS), pp. 77-82

  • Boström C, Baden S, Bockelmann A-C, Dromph K, Fredriksen S, Gustafsson C, Krause-Jensen D, Möller T, Nielsen SL, Olesen B, Olsen J, Pihl L, Rinde E (2014) Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation. Aquat Conserv Mar Freshwat Ecosyst 24:410–434

    Article  Google Scholar 

  • Bundesministerium für Naturschutz (Hrsg) (2009) Gesetz über Naturschutz und Landschaftspflege. Bundesnaturschutzgesetz – BNatSchG, Berlin

    Google Scholar 

  • Costello MJ (2009) Distinguishing marine habitat classification concepts for ecological data management. Mar Ecol Prog Ser 397:253–268

    Article  Google Scholar 

  • Couling N (2016) The ocean project – planning a resilient seascape. International Planning History Society Proceedings 17(4)

  • CRM, Coastal Research & Management (1998–2016) Reports and impact assessments, unpublished

  • CRM, Coastal Research & Management (2015) Versetzung von Seegras vom Fähranleger Kiel-Schilksee zum Ölberg am Ostufer der Kieler Förde pp 14

  • CRM, Coastal Research & Management (2016): Rahmenkonzept für einen Sublitoralen Biotopverbund in der Kieler Förde im Auftrag und in Zusammenarbeit mit dem Umweltschutzamt Kiel. Abschlussbericht 31. Oktober 2016. pp. 40

  • Cunha AH, Duarte CM, Krause-Jensen D (2004) How long time does it take to recolonize seagrass beds? In: Borum J, Duarte CM, Krause-Jensen D, Greve TM (eds.) European seagrasses: an introduction to monitoring and management. EU project monitoring and managing of European Seagrasses (M&MS), pp. 72-76

  • Dahl F (1908) Grundsätze und Grundbegriffe der biocenotischen Forschung. Zool Anz 33:349–353

    Google Scholar 

  • Daily GC, Söderqvist T, Aniyar S, Arrow K, Dasgupta P, Ehrlich PR, Folke C, Jansson AM, Jansson B-O, Kautsky N, Levin S, Lubchenco J, Mäler K-G, Simpson Starrett D, Tilman D, Walker B (2000) The value of nature and the nature of value. Science 289(5478):395–396

    Article  Google Scholar 

  • Damschen EI, Brudvig LA (2012) Landscape connectivity strengthens local–regional richness relationships in successional plant communities. Ecology 93(4):704–710

    Article  Google Scholar 

  • Damschen EI, Haddad NM, Orrock JL, Tewksbury JJ, Levey DJ (2006) Corridors increase plant species richness at large scales. Science 313(5791):1284–1286

    Article  Google Scholar 

  • Daschkeit A, Sterr H, Kirstein K-G, Krost P (2007) Analyse und Bewertung ‚erheblich veränderter Küstengewässer‘ im Kontext der Wasserrahmenrichtlinie. Das Beispiel Kieler Förde. In: Gönnert G, Pflüger B, Bremer JA (eds) Von der Geoarchäologie über die Küstendynamik zum Küstenzonenmanagement. Coastline Reports 9:27–33

  • Dauvin JC, Bellan G, Bellan-Santini D (2008a) The need for clear and comparable terminology in benthic ecology. Part I Ecological concepts Aquatic Conservation: Marine and Freshwater Ecosystems 18(4):432–445

    Article  Google Scholar 

  • Dauvin JC, Bellan G, Bellan-Santini D (2008b) The need for clear and comparable terminology in benthic ecology. Part II Application of the European Directives Aquatic Conservation: Marine and Freshwater Ecosystems 18(4):446–456

    Article  Google Scholar 

  • Elmgren R, Hill C (1997) Ecosystem function at low biodiversity – the Baltic example. In: Ormond RFG, gage JD, angel MV (1997) marine biodiversity. Patterns and Processes, Cambridge, pp 319–336

    Google Scholar 

  • European Commission (1992) Habitats Directive. Council Directive 92/43/EEC on the conservation of natural habitats of wild fauna and flora. http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm. Accessed 23 Nov 2015

  • European Commission (2003) Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance document no. 4, Identification and Designation of Heavily Modified and Artificial Water Bodies, pp. 118

  • European Commission (2008) Marine Strategy Framework Directive. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0056. Accessed 4 Dec 2016

  • European Commission (2011) Our life insurance, our natural capital: an EU biodiversity strategy to:2020 http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52011DC0244. Accessed 4 Dec 2016

  • European Commission (2013) Interpretation Manual Of European Union Habitats. European Commission DG Environment, ENV B.3, pp. 146

  • European Environmental Agency (EEA) – European Nature Information System (EUNIS) (2015) EUNIS habitat types http://eunis.eea.europa.eu/habitats.jsp. Accessed 10 December 2015

  • Federal Agency for Nature Conservation (2009) A German red data book on endangered habitats. Short Version

  • Ganassin C, Gibbs PJ (2008) A review of seagrass planting as a means of habitat compensation following loss of seagrass meadow. NSW Department of Primary Industries - fisheries final report series no. 96, pp. 43

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Nature 319(5865):948–952

    Google Scholar 

  • Hartmann-Schröder G (1996) Annelida, Borstenwürmer, Polychaeta [Annelida, bristleworms, Polychaet]. I: Fischer G (Edt.) (1996) the fauna of Germany and adjacent seas with their characteristics and ecology. 2nd edition. pp. 648

  • HELCOM (1998) Red list of marine and coastal biotopes and biotope complexes of the Baltic Sea, Belt Sea and Kattegat. Baltic Sea Environ Proc 75:128

    Google Scholar 

  • HELCOM (2013) HELCOM HUB – technical report on the HELCOM underwater biotope and habitat classification. Balt Sea Environ Proc No 139:96

    Google Scholar 

  • Holland MD, Hastings A (2008) Strong effect of dispersal network structure on ecological dynamics. Nature 456:792–795

    Article  Google Scholar 

  • Howell KL (2010) A benthic classification system to aid in the implementation of marine protected area networks in the deep/high seas of the NW Atlantic. Biol Conserv 143(2010):1041–1056

    Article  Google Scholar 

  • Jedicke E (1990) Biotopverbund – Grundlagen und Maßnahmen einer neuen Naturschutzstrategie. Eugen Ulmer, Stuttgart, p 254

    Google Scholar 

  • Jongman RH, Kamphorst D (2002) Ecological Corridors in Land Use Planning and Development Policies. National approaches for ecological corridors of countries implementing the Pan-European Landscape and Biological Diversity Strategy. In: Committee for Activities of the Council of Europe in the Field of Biological and Landscape Diversity (eds.) (2002) Nature and Environment 125

  • Karez R, Schories D (2005) Die Steinfischerei und ihre Bedeutung für die Wiederansiedlung von Fucus vesiculosus in der Tiefe. Rostocker Meeresbiologische Beiträge 14:95–107

    Google Scholar 

  • Kögler FC, Ulrich J (1985) Bodengestalt und Sediment der Kieler Förde. Schriften des naturwissenschaftlichen Vereins Schleswig-Holstein 55:1–33

    Google Scholar 

  • LLUR, Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein (2016) Kartieranleitung und Biotoptypenschlüssel für die Biotopkartierung Schleswig-Holstein pp 348

  • MacArthur RH (1965) Patterns of species diversity. Biol Rev 40(4):510–533

    Article  Google Scholar 

  • Marbà N, Duarte CM, Alexandre A, Cabaço S (2004) How do seagrasses grow and spread? In: Borum J, Duarte CM, Krause-Jensen D, Greve TM (eds.) European seagrasses: an introduction to monitoring and management. EU project monitoring and managing of European Seagrasses (M&MS), pp. 11-18

  • Meyer T, Nehring S (2006) Anpflanzung von Seegraswiesen (Zostera marina L.) als interne Maßnahme zur Restaurierung der Ostsee. Rostocker Meeresbiolog. Beitr 15:105–119

    Google Scholar 

  • Ministerium für Landwirtschaft, Umwelt und Ländliche Räume (Hrsg) (2009) Landesverordnung über gesetzlich geschützte Biotope. Biotopverordnung, Kiel

    Google Scholar 

  • Ogden LE (2015) Do wildlife corridors have a downside? Bioscience 65(4):452

    Article  Google Scholar 

  • Olenin S, Ducrotoy J-P (2006) The concept of biotope in marine ecology and coastal management. Mar Pollut Bull 53:20–29

    Article  Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13(1):S146–S158

    Article  Google Scholar 

  • Pehlke C, Selig U, Schubert H (2008) Verbreitung und Ökophysiologie von Fucus-Beständen der Mecklenburger Bucht (südliche Ostseeküste). Rostocker Meeresbiologische Beiträge 20:123–142

    Google Scholar 

  • Riecken U, Finck P, Raths U, Schröder E, Ssymank A (2009) A German red data book on endangered habitats (short version, July 2009)

  • Rosenberg DK, Noon BR, Meslow EC (1997) Biological corridors: form, function, and efficacy. Bioscience 47(10):677–687

    Article  Google Scholar 

  • Salomidi M, Katsanevakis S, Borja A, Braeckmann U, Damalas D, Galparsoro I, Mifsud R, Mirto S, Pascual M, Pipitone C, Rabaut M, Todorova V, Vassilopoulou V, Vega Fernández T (2012) Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management. Mediterr Mar Sci 13(1):49–88

    Article  Google Scholar 

  • Sandow V, Krost P (2014) Versetzungsexperimente mit Blasentang (Fucus vesiculosus) in der Kieler und Lübecker Bucht. RADOST, Berlin, Berichtsreihe 30:67

    Google Scholar 

  • Schwarzer K, Themann S (2003) Sediment distribution and geological buildup of Kiel Fjord (western Baltic Sea). Meyniana 55:91–115

    Google Scholar 

  • Selkoe KA, Henzler CM, Gaines SD (2008) Seascape genetics and the spatial ecology of marine populations. Fish Fish 9(4):363–377

    Article  Google Scholar 

  • Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. PNAS 99(20):12923–12926

    Article  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyamik S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrass across the globe threatens coastal ecosystems. PNAS 106(30):12377–12381

    Article  Google Scholar 

  • Wikström S, Daunys D, Leinikki J (2010) A proposed biotope classification system for the Baltic Sea. AquaBiota Report 2010:6

    Google Scholar 

  • Worm B, Reusch TBB (2000) Do nutrient availability and plant density limit seagrass colonization in the Baltic Sea? Mar Ecol Prog Ser 200:159–166

    Article  Google Scholar 

  • Zhou Y, Liu P, Liu B, Liu X, Zhang X, Wang F (2014) Restoring eelgrass (Zostera marina L.) habitats using a simple and effective transplanting technique. PLoS One 9(4):1–7

    Google Scholar 

Download references

Acknowledgements

We acknowledge the environmental protection agency (Umweltschutzamt) of the City of Kiel for their financial contributions to the project and in particular to K.-H. Kweton for his interest and support. We also thank Carolin Breunig-Lutz (Stadtplanungsamt der Landeshauptstadt Kiel) for maps and shapefiles from the project ‘Rahmenplan Kieler Förde’, and Birger Treimer (CAU Kiel) for his help during his internship at CRM. A special thanks goes to Lotta Maack (CRM) and Solveig Blöcher (CAU Kiel) for substantial support with GIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Goerres.

Electronic supplementary material

Fig. A1

Map of sediment types and water depths of Kiel Fjord (data sources: BSH, Schwarzer and Themann 2003; cartography: Matthias Goerres; coordinate system: Gauß-Krüger zone 3, EPSG 31467) (JPEG 924 kb)

Fig. A2

Historical map (1853) of Kiel Fjord with comparison to current (1973) extent and 20 m depth line (blue-dotted) (source: Institute of Geography, Kiel University) (PNG 16018 kb)

ESM 1

Overview of unpublished reports and impact assessment of compensation measures in Kiel Fjord (CRM 1998–2016) (PDF 262 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krost, P., Goerres, M. & Sandow, V. Wildlife corridors under water: an approach to preserve marine biodiversity in heavily modified water bodies. J Coast Conserv 22, 87–104 (2018). https://doi.org/10.1007/s11852-017-0554-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11852-017-0554-0

Keywords

  • Sublittoral
  • Wildlife corridor
  • Biotope network
  • Ecological connectivity