You can’t run but you can hide: the negative influence of human presence on mid-sized mammals on an Atlantic island

Abstract

Here, we report the results of a camera-trapping survey of mid-sized (1–50 kg) mammals on an oceanic Atlantic forest island in Brazil. Despite 80% of the island being formally reserved for conservation, the island’s northern areas support a small, but rapidly growing human population that we expected would disturb the mammals and their foraging and movement behaviors. Hunting activities are also more frequent and severe on the north side of the island, closer to the villages. We tested the following hypothesis: the probability of occupancy, detectability, and abundance of mid-sized mammals will be higher in less-disturbed areas on southern parts of the island than in more-disturbed areas to the north. Ordination using multi-dimensional scaling (MDS) highlighted that mammal assemblages were differentiated between the northern and southern slope areas, and regression analyses showed MDS scores to be associated strongly with an index of human population density. Occupancy models for Didelphis aurita, Dasypus novemcinctus, Dasyprocta leporina, and Cuniculus paca showed no effect of habitat covariates, but there were marked effects of human activity impact on the detection probability of all species, except D. aurita. Species detections and local abundances were higher in the less disturbed southern parts of the island. Our results support the notion that mid-sized mammals will change their movement and foraging behaviors as a function of human activities, even inside reserved, protected areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd international symposium on information theory. Akademia Kiado, Budapest, pp 267–281

    Google Scholar 

  2. Alho CJR, Schneider M, Vasconcellos LA (2002) Degree of threat to the biological diversity in the Ilha Grande State Park (RJ) and guidelines for conservation. Braz J Biol 62:375–385

    Article  Google Scholar 

  3. Almeida-Neto M, Campassi F, Galetti M, Jordano P, Oliveira-Filho A (2008) Vertebrate dispersal syndromes along the Atlantic forest: broad-scale patterns and macroecological correlates. Glob Ecol Biogeogr 17:503–513

    Article  Google Scholar 

  4. Bergallo HG, Rocha CFD, Alves MAS, Van Sluys M (2000) (ed). A fauna ameaçada de extinção do Estado do Rio de Janeiro. 1. ed. Rio de Janeiro: EdUERJ, v. 1. 166p

  5. Bray RJ, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  6. Bruner AG, Gullison RE, Rice RE, Da Fonseca GAB (2001) Effectiveness of park in protecting tropical biodiversity. Science 291:125–128

    Article  Google Scholar 

  7. Cáceres NC, Monteiro-Filho ELA (2001) Food habits, home range and activity of Didelphis aurita (Mammalia, Marsupialia) in a forest fragment of southern Brazil. Stud Neotropical Fauna Environ 36:85–92

    Article  Google Scholar 

  8. Canale GR, Peres CA, Guidorizzi CE, Gatto CAF, Kierulff MCM (2012) Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PLoS One 7:e41671

    Article  Google Scholar 

  9. Chiarello, AG (1999) Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil biol Conserv. 89: 71-82

  10. Chiarello AG (2000) Density and population size of mammals in remnants of Brazilian Atlantic forest. Conserv Biol 14:1649–1657

    Article  Google Scholar 

  11. Cullen L Jr, Bodmer RE, Valladares Pádua C (2000) Effects of hunting in habitat fragments of the Atlantic forest. Braz Biol Conserv 95:49–56

    Article  Google Scholar 

  12. DeFries R, Hansen A, Newton AC, Hansen MC (2005) Increasing isolation of protected areas in tropical forests over the past 20 years. Ecol Appl 15:19–26

    Article  Google Scholar 

  13. Ferreguetti AC, Tomas WM, Bergallo HG (2015) Density, occupancy, and activity pattern of two sympatric deer (Mazama) in the Atlantic Forest, Brazil. J Mammal 96:1245–1254

  14. Ferreguetti AC, Tomas WM, Bergallo HG (2016) Density and niche segregation of two armadillo species (Xenarthra: Dasypodidae) in the Vale Natural Reserve, Brazil. Mamm Biol 81:138–145

  15. Ferreguetti AC, Tomas WM, Bergallo HG (2017) Density, occupancy, and detectability of lowland tapirs, Tapirus terrestris, in Vale Natural Reserve, southeastern Brazil. J Mammal 98:114–123

  16. Galetti M, Dirzo R (2013) Ecological and evolutionary consequences of living in a defaunated world. Biol Conserv 163:1–6

    Article  Google Scholar 

  17. Galetti M, Fernandez JC (1998) Palm heart harvesting in the Brazilian Atlantic forest changes in industry structure and the illegal trade. Ecol Appl 35:294–301

    Article  Google Scholar 

  18. Galetti M, Keuroghlian A, Hanada L, Morato MI (2001) Frugivory and seed dispersal by the lowland tapir (Tapirus terrestris) in southeast Brazil. Biotropica 33:723–726

    Article  Google Scholar 

  19. Hines JE (2006) PRESENCE – software to estimate patch occupancy and related parameters. USGS-PWRC Available: http://www.mbr-pwrc.usgs.gov/software/presence.html

  20. Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–223

    Article  Google Scholar 

  21. IBGE – Instituto Brasileiro de Geografia e Estatística (2010). Atlas do censo demográfico 2010. IBGE, Rio de Janeiro 2013; pp 156

  22. INEA – Instituto Estadual do Ambiente (2010) Plano de Manejo do Parque Estadual da Ilha Grande. INEA, Rio de Janeiro, pp 585

  23. Jenkins, C.N., Pimm, S.L. (2006) Definindo prioridades de conservação em um hotspot de biodiversidade global (Defining conservation priorities in a global biodiversity hotspot). Chapter in Biologia da Conservação: Essências. Rocha, C.F.D.; H.G. Bergallo; M. Van Sluys & M.A.S. Alves. (eds.). RiMa Editora, São Carlos

  24. Laurance WF et al (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489:290–294

    Article  Google Scholar 

  25. Lessa ICM, Bergallo HG (2012) Modelling the population control of the domestic cat: an example from an island in Brazil. Braz J Biol 72:445–452

    Article  Google Scholar 

  26. Lomolino MV, Riddle BR, Brown JH (2006) Biogeography, third edn. Sinauer, Sunderland

    Google Scholar 

  27. Lynam AJ et al (2013) Terrestrial activity patterns of wild cats from camera-trapping. Raffles Bull Zool 61:407–415

    Google Scholar 

  28. Machado ABM, Drummond GM, Paglia AP (2008) Livro Vermelho da fauna brasileira ameaçada de extinção. MMA, Brasília, 1420 p

    Google Scholar 

  29. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  30. Mittermeier RA, Myers N, Thomsen JB, Da Fonseca GAB, Olivieri S (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520

    Article  Google Scholar 

  31. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  32. Oksanen J, Blanchet, FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0–4

  33. Oliveira RR (2002) Ação antrópica e resultantes sobre a estrutura da vegetação e composição da Mata Atlântica na Ilha Grande-RJ. Rodriguésia 53:33–58

    Google Scholar 

  34. Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci U S A 105:20770–20775

    Article  Google Scholar 

  35. Reis NR, Peracchi AL, Pedro WA, Lima IP (2011) Mamíferos do Brasil. Universidade Estadual de Londrina, Londrina

    Google Scholar 

  36. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  37. Royle JA, Nichols JD (2003) Estimating abundance from repeated presence-absence data or point counts. Ecology 84:777–790

    Article  Google Scholar 

  38. Sastre C (1982) Notion de clímax em régions neótropicales. Compte rendu des Seances Soc Biogeog 58:117–123

    Google Scholar 

  39. Schupp EW, Milleron T, Russo SE, Levey DJ, Silva WR, Galetti M (2000) Dissemination limitation and the origin and maintenance of species-rich tropical forests. In: Levey, D.J., Silva, W.R., Galetti, M. (Eds). Seed dispersal and Frugivory: ecology, evolution and conservation. Third International Symposium-Workshop on frugivores and seed dispersal, São Pedro, Brazil, 6-11 august 2000. CABI publishing, pp 19-33. doi: 10.1079/9780851995250.0019

  40. TEAM Network (2011) Terrestrial vertebrate protocol: implementation manual, v. 3.1. Tropical ecology, assessment and monitoring network. Center for Applied Biodiversity Science, Conservation International, Arlington

    Google Scholar 

  41. Urquiza-Haas T, Peres CA, Dolman PM (2009) Regional scale effects of human density and forest disturbance on large-bodied vertebrates throughout the Yucatán Peninsula, Mexico. Biol Conserv 142:134–148

    Article  Google Scholar 

  42. Vine SJ, Crowther MS, Lapidge SJ, Dickman CR, Mooney N, Piggott MP, English AW (2009) Comparison of methods to detect rare and cryptic species: a case study using the red fox (Vulpes vulpes). Wildl Res 36:436–446

    Article  Google Scholar 

  43. Wallace AR (1869) The Malay archipelago. MacMillan, London

    Google Scholar 

  44. Wetzel RM, Mondolfi E (1979) The subgenera and species of long-nosed armadillos, genus Dasypus L. In: Eisenberg JF (ed) Vertebrate ecology in the Northern Neotropics. Smithsonian Institution Press, Washington, D.C, pp 43–63

    Google Scholar 

  45. Wright SJ, Sanchez-Azofeifa G, Portillo-Quintero C, Davies D (2007) Poverty and corruption compromise tropical forest reserves. Ecol Appl 17:1259–1266

    Article  Google Scholar 

Download references

Acknowledgments

We thank FAPERJ (E-26/103.016/2011 to HGB), and CNPq (307715/2009-4 to HGB) for financing the study. I. Lessa thanks the Brazilian Ministry of Education (CAPES) for a MSc scholarship to the Post-Graduate Program of Ecology and Evolution of the University of Rio de Janeiro State. We are also thankful to the managers of PEIG, INEA and all researchers that contributed to this work, especially José Mello, Mariana Soares and Rodrigo Salles.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Átilla Colombo Ferreguetti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lessa, I.C.M., Ferreguetti, Á.C., Kajin, M. et al. You can’t run but you can hide: the negative influence of human presence on mid-sized mammals on an Atlantic island. J Coast Conserv 21, 829–836 (2017). https://doi.org/10.1007/s11852-017-0544-2

Download citation

Keywords

  • Atlantic forest
  • Camera-trapping
  • Detectability
  • Environmental factors
  • Human impact
  • Mammal assemblages