Advertisement

Journal of Coastal Conservation

, Volume 21, Issue 2, pp 273–288 | Cite as

Management regimes in a coastal heathland –effects on vegetation, nutrient balance, biodiversity and gain of bioenergy

  • Irmgard BlindowEmail author
  • Dorothea Gauger
  • Matthias Ahlhaus
Article
  • 284 Downloads

Abstract

Little is known about nutrient balances and the effect of different management measures on coastal heathlands, which differ in habitat structure and nutrient deposition from the more well-investigated inland heaths. This investigation aims at documenting management effects in a coastal heathland on the island of Hiddensee, northeastern Germany, and to recommend suitable management measures for this heathland type. Soil and vegetation samples were taken, and the development of vegetation was monitored after a number of restoration measures such as sod-cutting, choppering, Heirieten (= manual removal of over-aged Calluna vulgaris) and mowing. Effects from grazing were estimated based on own and literature data, and the possible effect of burning was calculated. Finally, the potential gain of renewable energy was considered. A positive correlation between mineral soil nutrient concentrations and share of grasses in the vegetation indicates increasing grass-encroachment due to eutrophication. Areas with heavily grass-encroached, overaged Calluna developed a vegetation poor in grass cover and with dense, healthy Calluna after sod-cutting, choppering, mowing and Heirieten. Nutrient balance calculations indicate that high-intensity measures (sod-cutting, choppering, Heirieten) counteract 450, 250 and 90 years of nutrient deposition, respectively. A combination of low-intensity measures such as mowing, sheep grazing, burning and regular shrub clearance is recommended to preserve a high biodiversity, to rejuvenate Calluna vegetation and to achieve a balanced nutrient budget in Baltic coastal heathlands, where atmospheric nutrient deposition is far lower than in western Europe. Contrary to inland heathlands, mowing seems to be sufficient even for an initial restoration of heavily grass-encroached areas.

Keywords

Heathland management Carex arenaria Coastal dunes Prunus serotina Nitrogen Phosphorus 

Notes

Acknowledgements

The study was financially supported by the Bauer-Hollmann Stiftung (Stifterverband der Deutschen Wissenschaften). We thank the nature conservation authorities (National Park Vorpommersche Boddenlandschaft, Staatliches Amt für Landwirtschaft und Umwelt Vorpommern, Untere Naturschutzbehörde Landkreis Vorpommern) for support of this investigation. Dirk Mertens and Stefan Wormanns (Verein Naturschutzpark e.V.) kindly demonstrated and discussed heathland management in the Lüneburger Heide. The shepherd Falk Majewski provided valuable information including all grazing data. Swantje Rieck and Kathrin Bünger assisted during the collection and analyses of soil and vegetation samples. Eva Remke, Jürgen Kreyling and an anonymous reviewer gave valuable comments on the manuscript, Eva Remke also contributed with some vegetation analyses (2007). Data on atmospheric phosphorus deposition were provided by Rhena Schumann.

References

  1. Ahlhaus M (2016) Fest-Energieträger aus Paludikultur. In: Wichtmann W, Schröder C, Joosten H (eds) Paludiculture – productive use of wet peatlands. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 45–55. isbn:978-3-510-65282-2Google Scholar
  2. Appelfelder J, Jurkschat M, Lehmann R, Lütkepohl M, Lüttschwager D, Ewald C, Graf V, Plettenberg F, Thielemann L (2011) Entwicklung von Verfahren für eine naturschutzgerechte und ökonomisch tragfähige Heidenutzung als Beitrag zur Regionalentwicklung am Beispiel der Heidefläche NSG Forsthaus Prösa. Abschlußbericht zum DBU-Projekt Az. 25506; Bad LiebenwerdaGoogle Scholar
  3. Bobbink R, Ashmore M, Braun S, Flückiger W, van den Wyngaert IJJ (2002) Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002 update. In: Swiss Agency for the Environment, Forests and Landscape (eds), Berne, pp 43–170Google Scholar
  4. Bonte D, Lens L, Maelfait JP (2006) Sand dynamics in coastal dune landscapes constrain diversity and life-history characteristics of spiders. J Appl Ecol 43:735–747CrossRefGoogle Scholar
  5. Buchholz S, Hannig K, Schirmel J (2013) Losing uniqueness—shifts in carabid species composition during dry grassland and heathland succession. Anim Conserv 16:661–670CrossRefGoogle Scholar
  6. De Haan BJ, Kros J, Bobbink R, van Jaarsveld JA, de Vries W, Noordijk H (2008) Ammoniak in Nederland. Planbureau voor de Leeformgeving, BilthovenGoogle Scholar
  7. Deutsches Institut für Normung (ed) (2005a) DIN 51006: Thermische analyse (TA) - Thermogravimetrie (TG) - Grundlagen. Beuth Verlag BerlinGoogle Scholar
  8. Deutsches Institut für Normung (ed) (2005b) DIN 51900 (Teil 1 bis 3): Prüfung fester und flüssiger Brennstoffe - Bestimmung des Brennwertes mit dem Bomben-Kalorimeter und Berechnung des Heizwertes. Beuth Verlag BerlinGoogle Scholar
  9. EU (1992) Council directive 92/43/EEC of 21 may 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities No L 206:7–50Google Scholar
  10. Fagundez J (2013) Heathlands confronting global change: drivers of biodiversity loss from past to future scenarios. Ann Bot 111:151–172CrossRefGoogle Scholar
  11. Fottner S, Härdtle W, Niemeyer M, Niemeyer T, von Oheimb G, Meyer H, Mockenhaupt M (2007) Impact of sheep grazing on nutrient budgets of dry heathlands. Appl Veg Sci 10:391–398CrossRefGoogle Scholar
  12. Gustavs O (1999) Schwedische Landesaufnahme 1692-1709. Hiddensee 1695. Gustavs, RostockGoogle Scholar
  13. Härdtle W, Niemeyer M, Niemeyer T, Assmann T, Fottner S (2006) Can management compensate for atmospheric nutrient deposition in heathland ecosystems? J Appl Ecol 43:759–769CrossRefGoogle Scholar
  14. Härdtle W, von Oheimb G, Gerke AK, Niemeyer M, Niemeyer T, Assmann T, Drees C, Matern A, Meyer H (2009) Shifts in N and P budgets of heathland ecosystems: effects of management and atmospheric inputs. Ecosystems 12:298–310CrossRefGoogle Scholar
  15. Hartley SE, Gardner SM, Mitchell RJ (2003) Indirect effects of grazing and nutrient addition on the hemipteran communty of heather moorlands. J Appl Ecol 40:793–803CrossRefGoogle Scholar
  16. Heil GW, Diemont WH (1983) Raised nutrient levels change heathland into grassland. Vegetatio 53:113–120CrossRefGoogle Scholar
  17. Hintze J (2001) NCSS and PASS. Number Cruncher Statistical System, Kaysville WWW.NCSS.COM Google Scholar
  18. Jones AG, Power SA (2012) Field-scale evaluation of effects of nitrogen deposition on the functioning of heathland ecosystems. J Ecol 100:331–342CrossRefGoogle Scholar
  19. Jones AG, Power SA (2015) Functional relationships with N deposition differ according to stand maturity in Calluna-dominated heathland. Ambio 44:131–141CrossRefGoogle Scholar
  20. Kingston HM, Haswell SJ (1997) Microwave enhanced chemistry: fundamentals, sample preparation and applications. American Chemical Society, Washington, DCGoogle Scholar
  21. Kostiainen K, Jalkanen H, Kaakinen S, Saranpää P (2006) Wood properties of two silver birch clones exposed to elevated CO2 and O3. Glob Chang Biol 12:1230–1240CrossRefGoogle Scholar
  22. Landesamt für Forsten und Großschutzgebiete Mecklenburg-Vorpommern (2005) Heide und Wald. Entscheidungsfindung im Spannungsfeld zwischen Wiederbewaldung und erhaltender Pflege. Ostsee-Druck Rostock GmbHGoogle Scholar
  23. Mantilla-Contreras J, Schirmel J, Zerbe S (2012) Influence of soil and microclimate on species composition and grass encroachment in heath succession. J Plant Ecol 5:249–259CrossRefGoogle Scholar
  24. Möbus G (2000) Geologie der Insel Hiddensee (südliche Ostsee) in Vergangenheit und Gegenwart eine Monographie. Greifswalder Geowissenschaftliche Beiträge, Greifswald, pp 1–130Google Scholar
  25. Mohamed A, Härdtle W, Jirjahn B, Niemeyer T, von Oheimb G (2007) Effects of prescribed burning on plant available nutrients in dry heathland ecosystems. Plant Ecol 189:279–289CrossRefGoogle Scholar
  26. Neuber E (1970) Einige Aspekte des Einflusses der Ostsee auf das Klima Mecklenburgs. In: Wechselwirkungen zwischen Meer und Atmosphäre. Veröffentlichungen des Geophysikalischen Instituts der Karl-Marx Universität Leipzig, AkademischerVerlag, Berlin, pp 413–424Google Scholar
  27. Niemeyer M (2005) Auswirkungen extensiver und intensiver Pflegeverfahren auf den Nährstoffgehalt von Calluna-Heiden Nordwestdeutschlands. Dissertation, University of Lüneburg, GermanyGoogle Scholar
  28. Niemeyer T, Niemeyer M, Mohamed A, Fottner S, Härdtle W (2005) Impact of prescribed burning on the nutrient balance of heathlands with particular reference to nitrogen and phosphorus. Appl Veg Sci 8:183–192CrossRefGoogle Scholar
  29. Niemeyer M, Niemeyer T, Fottner S, Härdtle W, Mohamed A (2007) Impact of sod-cutting and choppering on nutrient budgets of dry heathlands. Biol Conserv 134:344–353CrossRefGoogle Scholar
  30. Olff H, Huisman J, Van Tooren BF (1993) Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. J Ecol 81:693–706CrossRefGoogle Scholar
  31. Pechoel K (2009) Beprobung, Charakterisierung und Untersuchung von Biobrennstoffen aus der Landschaftspflege von nordostdeutschen Küstenstandorten. Diploma thesis, University of Applied Sciences, StralsundGoogle Scholar
  32. Pilkington MG, Caporn SJM, Carroll JA, Cresswell N, Lee JA, Reynolds B, Emmett BA (2005) Effects of increased deposition of atmospheric nitrogen on an upland moor: nitrogen budgets and nutrient accumulation. Environm Pollution 138:473–484CrossRefGoogle Scholar
  33. Provoost S, Jones MLM, Edmondson SE (2011) Changes in landscape and vegetation of coastal dunes in Northwest Europe: a review. J Coast Conserv 15:207–226CrossRefGoogle Scholar
  34. Ransijn J, Kepfer-Rojas S, Verheyen K, Riis-Nielsen T, Schmidt IK (2015) Hints for alternative stable states from long-term vegetation dynamics in an unmanaged heathland. J Veg Sci 26:254–266CrossRefGoogle Scholar
  35. Remke E, Blindow I (2011) Site specific factors have an overriding impact on Baltic dune vegetation change under low to moderate N-deposition - a case study from Hiddensee island. J Coast Conserv 15:87–97CrossRefGoogle Scholar
  36. Remke E, Brouwer E, Kooijman A, Blindow I, Esselink H, Roelofs JGM (2009a) Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea. Environ Pollut 157:792–800CrossRefGoogle Scholar
  37. Remke E, Brouwer E, Kooijman A, Blindow I, Roelofs JGM (2009b) Low atmospheric nitrogen loads lead to grass encroachment in coastal dunes, but only on acid soils. Ecosystems 12:1173–1188CrossRefGoogle Scholar
  38. Schirmel J, Buchholz S (2011) Response of carabid beetles (Coleoptera: Carabidae) and spiders (Araneae) to coastal heathland succession. Biodivers Conserv 20:1469–1482CrossRefGoogle Scholar
  39. Schirmel J, Fartmann T (2014) Coastal heathland succession influences butterfly community composition and threatens endangered butterfly species. J Insect Conserv 18:111–120CrossRefGoogle Scholar
  40. Schirmel J, Blindow I, Fartmann T (2010) The importance of habitat mosaics for orthoptera (Caelifera and Ensifera) in dry heathlands. Eur J Entomol 107:129–132CrossRefGoogle Scholar
  41. Schirmel J, Mantilla-Contreras J, Blindow I, Fartmann T (2011a) Impacts of succession and grass encroachment on heathland orthoptera. J Insect Conserv 15:633–642CrossRefGoogle Scholar
  42. Schirmel J, Timler L, Buchholz S (2011b) Impact of the invasive moss Campylopus introflexus on carabid beetles (Coleoptera: Carabidae) and spiders (Araneae) in acidic coastal dunes at the southern Baltic Sea. Biol Invasions 13:605–620CrossRefGoogle Scholar
  43. Schröder C (2008) Die Heidegebiete Hiddensees - Ein Überblick über die vergangenen 150 Jahre Kulturlandschaftsgeschichte. Diploma Thesis, University of Greifswald, GermanyGoogle Scholar
  44. Schröder W, Holy M, Pesch R, Harmens H, Fagerli H (2011) Mapping background values of atmospheric nitrogen total depositions in Germany based on EMEP deposition modelling and the European moss survey 2005. Environ Sci Eur 23:18CrossRefGoogle Scholar
  45. Schumann R (2013) Atmosphärische Phosphordeposition in Zingst - 1995 bis 2012. Kurzmitteilung der Biologischen Station Zingst der Universität Rostock an das Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-VorpommernGoogle Scholar
  46. Sieber M, Fottner S, Niemeyer T, Härdtle W (2004) Einfluss maschineller Pflegeverfahren auf die Nährstoffdynamik von Sandheiden. NNA-Berichte 17(2):21–36Google Scholar
  47. Subklew H (2007) Küstenschutzwald auf der Insel Hiddensee: Einfluss auf die Neophyten Campylopus introflexus und Prunus serotina und rechtliche Grundlagen für einen Rückbau. Diploma Thesis, University of Greifswald, GemanyGoogle Scholar
  48. Tipping E, Benham S, Boyle JF, Crow P, Davies J, Fischer U, Guyatt H, Helliwell R, Jackson-Blake L, Lawlor AJ et al (2014) Atmospheric deposition of phosphorus to land and freshwater. Evnviron Sci Process Impacts 16:1608–1617CrossRefGoogle Scholar
  49. Van Dobben HF, Warnelink GWW, Klimkowska A, Slim PA, van Til M (2014) Year-round grazing to counteract effects of atmospheric nitrogen deposition may aggravate these effects. Environ Pollut 195:226–231CrossRefGoogle Scholar
  50. Veer MAC, Kooijman AM (1997) Effects of grass-encroachment on vegetation and soil in Dutch dry dune grasslands. Plant Soil 192:119–128CrossRefGoogle Scholar
  51. Von Oheimb G, Power SA, Falk K, Friedrich U, Mohamed A, Krug A, Boschatzke N, Härdtle W (2010) N:P ratio and the nature of nutrient limitation in Calluna-dominated heathlands. Ecosystems 13:317–327CrossRefGoogle Scholar
  52. Waldner P, Marchetto A, Thimonier A, Schmitt M, Rogora M, Granke O, Mues V, Hansen K, Karlsson GP, Zlindra D et al (2014) Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atmos Environ 95:363–374CrossRefGoogle Scholar
  53. Webb NR (1998) The traditional management of European heathlands. J Appl Ecol 35:987–990CrossRefGoogle Scholar
  54. Williams B (2003) A cowmparison of heathland management practices, approaches and mechanisms in the UK and the Netherlands. Dissertation, National University of Ireland, GalwayGoogle Scholar
  55. Wünsch Y, Schirmel J, Fartmann T (2012) Conservation management of coastal dunes for orthoptera has to consider oviposition and nymphal preferences. J Insect Conserv 16:501–510CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Irmgard Blindow
    • 1
    Email author
  • Dorothea Gauger
    • 1
  • Matthias Ahlhaus
    • 2
  1. 1.Biological Station of HiddenseeUniversity of GreifswaldKlosterGermany
  2. 2.Fachhochschule StralsundUniversity of Applied SciencesStralsundGermany

Personalised recommendations