Skip to main content

Multipurpose line for mapping coastal information using a data model: the Andalusian coast (Spain)

Abstract

The concept of the coastline is key in coastal studies. However, its definition depends on the purpose and scale of the study. To determine the shoreline position, a set of criteria has to be chosen to define its position: the high tide mark, the base or top of a ridge, or cliff line, for example. Usually, these criteria are site-specific and often forgotten after digitisation. In this paper, a methodology is described for generating a multipurpose line within a spatial database. Here, the term ‘multipurpose line’ refers to a digital map structure holding diverse coastal data (natural and anthropogenic) digitised by a user and easily convertible into a single line after application of feature selection criteria. A data model is defined for the database design, which gives robustness to the database and facilitates the data entry, updates and data exploitation. This allows the generation of three shorelines (physiographic, erosion or simplified shoreline), which can be easily extracted from the spatial database. To illustrate the methodology, the development of the Andalusian multipurpose line (southern Spain) is explained in detail. An example of data exploitation is also given, generating different environmental indicators (shoreline length by type, beach width, etc.) that may lead to further research or to assist coastal managers and decision makers at the coastal zone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Alesheikh AA, Ghorbanali A, Nouri N (2007) Coastline change detection using remote sensing. Intern J Environ Sci Technol 4(1):61–66

    Article  Google Scholar 

  • Boak EH, Turner IL (2005) Shoreline definition and detection: a review. J Coast Res 21(1):688–703. doi:10.2112/03-0071.1

    Article  Google Scholar 

  • Brown I (2006) Modelling future landscape change on coastal floodplains using a rule-based GIS. Environ Model Softw 21(10):1479–1490. doi:10.1016/j.envsoft.2005.07.011

    Article  Google Scholar 

  • Burke L, Kura Y, Kassem K, Ravenga C, Spalding M, McAllister D (2001) Pilot assessment of global ecosystems: coastal ecosystems. World Resources Institute, Washington, D.C.

    Google Scholar 

  • Casal G, Sánchez-Carnero N, Freire J (2010) Generación de una línea de costa digital de Galicia (NW españa) a gran escala, utilizando fotointerpretación y segmentación dinámica. Boletín de la Asociación de Geógrafos Españoles 53:7–19

    Google Scholar 

  • Chen WW, Chang HK (2009) Estimation of shoreline position and change from satellite images considering tidal variation. Estuar Coast Shelf Sci 84: 54–60. doi: 10.2112/JCOASTRES-D-12-00088.1

    Article  Google Scholar 

  • Cicin-Sain B, Belfiore S (2005) Linking marine protected areas to integrated coastal and ocean management: a review of theory and practice. Ocean Coast Manag 48(11–12):847–868. doi:10.1016/j.ocecoaman.2006.01.001

    Article  Google Scholar 

  • Cornwell JC, Kemp WM, Kana TM (1999) Denitrification in coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquat Ecol 33:41–54

    Article  Google Scholar 

  • Costanza R, D’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Naeem S, Limburg K, Paruelo J, O’Neill RV, Raskin R, Sutton P, Van den Belt M (1997) The value of the world’s ecosystem: services and natural capital. Nature 387:253–260. doi:10.1038/387253a0

    Article  Google Scholar 

  • Crowell M, Leatherman SP, Buckley MK (1991) Historical shoreline change: error analysis and mapping accuracy. J Coast Res 7(3):839–852

    Google Scholar 

  • Crowell M, Leatherman SP, Douglas B (2005) Erosion: historical analysis and forecasting. In: Schwartz ML (ed) Encyclopedia of coastal science. Springer, Dordretch, pp. 428–432

    Google Scholar 

  • Del Río L, Gracia FG (2013) Error determination in the photogrammetric assessment of shoreline changes. Nat Hazards 63:2385–2397

    Google Scholar 

  • Dolan R, Hayden BP, May P, May SK (1980) The reliability of shoreline change measurements from aerial photographs. Shore and Beach 48(4):22–29

    Google Scholar 

  • Environmental European Agency (2005) Priority issues in the Mediterranean environment, Copenhagen

  • Fletcher C, Rooney J, Barbee M, Lim S, Richmond BM (2003) Mapping shoreline change using digital ortophotogrammetry on Maui, Hawaii. J Coast Res 38:106–124

    Google Scholar 

  • Gómez C, Wulder MA, Dawson AG, Ritchie W, Green DR (2014) Shoreline change and coastal vulnerability characterization with Landsat imagery: a case study in the Outer  Hebrides, Scotland. Scott Geogr J 130(4):279–299

  • Goy JL, Zazo C, Dabrio CJ, Lario J, Borja F, Sierro FJ, Flores A (1996) Global and regional factors controlling changes of coastlines in southern Iberia (Spain) during the Holocene. Quat Sci Rev 15(8–9):773–780

    Article  Google Scholar 

  • Greenpeace (2010) Destrucción a toda costa. Informe sobre la situación del litoral español. Greenpeace España, Madrid, p 168

  • Guariglia A, Bounamassa A, Losurdo A, Saladino R, Trivigno ML, Zaccagnino A, Colangelo A (2006) A multisource approach for coastline zapping and identification of shoreline changes. Ann Geophys 46(1):295–304

    Google Scholar 

  • Hoozemans FMJ, Marchand M, Pennekamp HA (1993) Sea level rise: a global vulnerability analysis, vulnerability assessments for population, coastal wetlands and rice production on a global scale. Second revised edition, Delft Hydraulics and Rijkswaterstaat, Delft and The Hague, The Netherlands.

  • Hughes ML, McDowell PF, Marcus WA (2006) Accuracy assessment of georectified aerial photographs: implications for measuring lateral channel movement in a GIS. Geomorphology 74(1–4):1–16. doi:10.1016/j.geomorph.2005.07.001

    Article  Google Scholar 

  • Klein RJT, Nicholls RJ (1999) Assessment of coastal vulnerability to climate change. Ambio 28(2):182–187

    Google Scholar 

  • Krause G, Glaser M (2003) Co-evolving geomorphical and socio-economic dynamics in a coastal fishing village of the Bragança region (Pará, North Brazil). Ocean Coast Manag 46(9–10):859–874. doi:10.1016/S0964-5691(03)00069-3

    Article  Google Scholar 

  • Kroon A, Davidson MA, Aarninkhof SGJ, Archetti R, Armaroli C, Gonzalez M, Medri S, Osorio A, Aagaard T, Holman RA, Spanhoff R (2007) Application of remote sensing video systems to coastline management problems. Coast Eng 54:493–505

    Article  Google Scholar 

  • Lafon V, Apoluceno DDM, Dupuis H, Michel D, Howa H, Froidefond JM (2004) Morphodynamics of nearshore rhythmic sandbars in a mixed-energy enviroment (SW France): I. Mapping beach changes using visible satellite imagery. Estuar Coast Shelf Sci 61(2):289–299. doi:10.1016/j.ecss.2004.05.006

    Article  Google Scholar 

  • Leatherman SP (2003) Shoreline change mapping and management along the US east coast. J Coast Res SI-38:5–13

    Google Scholar 

  • Lins-de-Barros FM, Muehe D (2013) The smartline approach to coastal vulnerability and social risk assessment applied to a segment of the east coast of Rio de Janeiro state, brazil. J Coast Conserv 17(2):211–223

    Article  Google Scholar 

  • Maiti S, Bhattacharya A (2009) Shoreline change analysis and its application to prediction: a remote sensing and statistics based approach. Mar Geol 257(1–4):11–23. doi:10.1016/j.margeo.2008.10.006

    Article  Google Scholar 

  • Mangor K (2001) Shoreline management guidelines. DHI Water and Environment, Horsholm

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: wetlands and water (synthesis). Washington, D.C.

    Google Scholar 

  • Mimura N, Nunn PD (1998) Trends of beach erosion and shoreline protection in rural Fiji. J Coast Res 14(1):37–46

    Google Scholar 

  • Moser SC, Tribbia J (2006) Vulnerability to inundation and climate change impacts in California: coastal managers. Attitudes and perceptions. Mar Technol Soc J 40(4):35–44,10. doi:10.4031/002533206787353169

    Article  Google Scholar 

  • Nageswara Rao K, Subraelu P, Venkateswara Rao T, Hema Malini B, Ratheesh R, Bhattacharya S, Rajawat AS, Ajai (2009) Sea-level rise and coastal vulnerability: an assessment of Andhra Pradesh coast, India through remote sensing and GIS. J Coast Conserv 12(4):195–207

    Article  Google Scholar 

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520. doi:10.1126/science.1185782

    Article  Google Scholar 

  • Ojeda J (1988) Peculiaridades morfodinámicas de la fachada ibérica del golfo de Cádiz: geomorfología Litoral. Revista de Estudios Andaluces 10:53–68

    Google Scholar 

  • Ojeda J (2000) Métodos Para el cálculo de la erosión costera. Revisión, tendencias y propuesta. Boletín de la Asociación de Geógrafos Españoles 30:103–118

    Google Scholar 

  • Ojeda J (2003) El relieve y las Costas Andaluzas. In: López-Ontiveros A (coord) Geografía de Andalucía. Ariel, Sevilla, pp 118–135

  • Ojeda J (2005) El mapa fisiográfico del Litoral de Andalucía. In: Consejería de Obras Públicas y Transporte y Consejería de Medio Ambiente (ed) Atlas de Andalucía, Tomo II: Cartografía Ambiental. Junta de Andalucía, Sevilla, pp 241–259

  • Ojeda Zújar J, Díaz Cuevas MP, Prieto Campos A, Álvarez Francoso J (2013) Línea de costa y sistemas de información geográfica: modelo de datos Para la caracterización y cálculo de indicadores en la costa andaluza. Rev Investig Geol 60:37–52

    Google Scholar 

  • Ojeda J, Álvarez JI, Cajaraville D, Fraile P (2009) El uso de las TIG Para el cálculo del índice de vulnerabilidad costera (CVI) ante una potencial subida del nivel del mar en la costa andaluza (españa). Revista Internacional de Ciencia y Tecnologías de la Información Geográfica GeoFocus 9:83–100

    Google Scholar 

  • Overton MF, Grenier RR, Judge EK, Fisher JS (1999) Identification and analysis of coastal erosion hazard areas: dare and Brunswick counties, North Carolina. J Coast Res SI-28:69–84

    Google Scholar 

  • Pajak MJ, Leatherman S (2002) The high water line as shoreline indicator. J Coast Res 18(2):329–337

    Google Scholar 

  • Pian S, Menier D (2011) The use of a geodatabase to carry out a multivariate analysis of coastline variations at various time and space scales. J Coast Res SI-64:1722–1723

    Google Scholar 

  • Psuty NP (2008) The coastal foredune: a morphological basis for regional coastal dune development. In: Martínez ML, Psuty N (eds) Coastal dunes: ecology and conservation, eds edn. Springer-Verlag, Berlin, pp. 11–27

    Chapter  Google Scholar 

  • Ribeiro M, Ferreira JC, Silva CP (2011) the sustainable carrying capacity as a tool for environmental beach management. J Coast Res SI64:1411–1414

    Google Scholar 

  • Sharples C, Mount R, Pedersen T (2009) The Australian coastal Smartline geomorphic and stability map version 1: manual and data dictionary. Sch Geogr Environ Stud, University of Tasmania 8th October 2009 Manual Version 1.1

  • Silva CP, Alves F, Rocha R (2007) The management of beach carrying capacity: the case of northern Portugal. J Coast Res SI-50:135–139

  • Small C, Nicholls RJ (2003) A global analysis of human settlement in coastal zones. J Coast Res 19(3):584–599

    Google Scholar 

  • Stanchev H, Young R, Stancheva M (2013) Integrating GIS and high resolution orthophoto images for the development of a geomorphic shoreline classification and risk assessment—a case study of cliff/bluff erosion along the Bulgarian coast. J Coast Conserv. doi:10.1007/s11852-013-0271-2

    Google Scholar 

  • Stive M, Aarminkhof S, Hamm L, Hanson H, Larson M, Wijnberg K, Nicholls R, Capobianco M (2002) Variability of shore and shoreline evolution. Coast Eng 47(2):211–235. doi:10.1016/S0378-3839(02)00126-6

    Article  Google Scholar 

  • Stockdon HF, Sallenger AH, List JH, Holman RA (2002) Estimation of shoreline position and change using airborne topographic lidar data. J Coast Res 18:502–513

    Google Scholar 

  • Tejada M, Malvarez GC, Navas F (2009) Indicators for the Assessment of Physical Carrying Capacity in Coastal Tourist Destinations. J Coast Res SI56:1159–1163

    Google Scholar 

  • Thieler ER, Danforth WW (1994) Historical shoreline mapping (I): improving techniques and reducing positioning errors. J Coast Res 10(3):549–563

    Google Scholar 

  • Tibbetts JR, van Proosdij D (2013) Development of a relative coastal vulnerability index in a macro-tidal environment for climate change adaptation. J Coast Conserv 17:775–797. doi:10.1007/s11852-013-0277-2

    Article  Google Scholar 

  • Turner RK, Georgi S, Fisher B (2008) Valuing ecosystem service: the case of multi-functional wetlands. Earthscan, London

    Google Scholar 

  • Uunk L, Wijnberg KM, Morelissen R (2010) Automated mapping of the intertidal beach bathymetry from video images. Coast Eng 57(4):461–469

    Article  Google Scholar 

  • Vafeidis AT, Nicholls RJ, McFadden L, Tol RSJ, Hinkel J, Spencer T, Grashoff PS, Boot G, Klein RJT (2008) A new global coastal database for impact and vulnerability analysis to sea-level rise. J Coast Res 24(4):917–924. doi:10.2112/06-0725.1

    Article  Google Scholar 

  • Van Dongeren A, Plant P, Cohen A, Roelvink D, Haller MC, Catalan P (2008) Beach wizard: nearshore bathymetry estimation through assimilation of model computations and remote observations. Coast Eng 55(12):1016–1027

    Article  Google Scholar 

  • Villar A (2013) La mercantilización del paisaje Litoral del mediterráneo andaluz: El caso paradigmático de la costa del sol y los Campos de golf. Revista de Estudios Regionales 96:215–242

    Google Scholar 

  • Wong PP (1998) Coastal tourism development in Southeast Asia: relevance and lessons for coastal zone management. Ocean Coast Manag 38(2): 89-109. doiI: 10.1016/S0964-5691(97)00066-5

  • Zazo C, Dabrio CJ, Goy JL, Lario J, Cabero A, Pajak PG, Bardají T, Mercier N, Borja F, Roquero E (2008) The coastal archives of the last 15 ka in the Atlantic–Mediterranean Spanish linkage area: sea level and climate changes. Quat Int 181(1):72–87

    Article  Google Scholar 

  • Zhang K, Whitman D, Leatherman S, Robertson W (2005) Quantification of beach changes caused by hurricane Floyd along Florida’s Atlantic coast using airborne laser surveys. J Coast Res 211:123–134

    Article  Google Scholar 

Download references

Acknowledgments

The current study has been developed within two research projects: one funded by the Spanish National Research Plan and European Regional Development Fund (ERDF) (“Espacialización y Difusión Web de Variables Demográficas, Turísticas y Ambientales para la Evaluación de la Vulnerabilidad Asociada a la Erosión de Playas en la Costa Andaluza”; CSO2010-15807) and the other one by Andalusia regional government (“Espacialización y Difusión Web de Datos de Urbanización, y Fitodiversidad para el Análisis de Vulnerabilidad ante los Procesos de Inundación Asociados a la Subida del Nivel del Mar. en la Costa Andaluz”; RNM-6207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fernandez-Nunez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernandez-Nunez, M., Díaz-Cuevas, P., Ojeda, J. et al. Multipurpose line for mapping coastal information using a data model: the Andalusian coast (Spain). J Coast Conserv 19, 461–474 (2015). https://doi.org/10.1007/s11852-015-0400-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11852-015-0400-1

Keywords

  • Multipurpose line
  • Shoreline
  • Data model
  • Coastal indicators
  • Andalusia