Skip to main content

Measuring sedimentation in tidal marshes: a review on methods and their applicability in biogeomorphological studies

Abstract

It is increasingly recognised that interactions between geomorphological and biotic processes control the functioning of many ecosystem types as described e.g. by the ecological theory of ecosystem engineering. Consequently, the need for specific bio-geomorphological research methods is growing recently. Much research on bio-geomorphological processes is done in coastal marshes. These areas provide clear examples of ecosystem engineering as well as other bio-geomorphological processes: Marsh vegetation slows down tidal currents and hence stimulates the process of sedimentation, while vice versa, the sedimentation controls ecological processes like vegetation succession. This review is meant to give insights in the various available methods to measure sedimentation, with special attention to their suitability to quantify bio-geomorphological interactions. The choice of method used to measure sedimentation is important to obtain the correct parameters to understand the biogeomorphology of tidal salt marshes. This review, therefore, aims to be a tool for decision making regarding the processes to be measured and the methods to be used. We, subdivide the methods into those measuring suspended sediment concentration (A), sediment deposition (B), accretion (C) and surface-elevation change (D). With this review, we would like to further encourage interdisciplinary studies in the fields of ecology and geomorphology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agrawal YC, Pottsmith HC (1994) Laser diffraction particle sizing in STRESS. Cont Shelf Res 14:1101–1121

    Google Scholar 

  2. Agrawal YC, Pottsmith HC (2000) Instruments for particle size and settling velocity observations in sediment transport. Mar Geol 168:89–114

    Google Scholar 

  3. Aitken MJ (1985) Thermoluminescence dating. Academic, London, 359 pp

    Google Scholar 

  4. Allen JRL (1990) The formation of coastal peat marshes under an upward tendency of relative sea-level. J Geol Soc 147:743–745

    Google Scholar 

  5. Allen JRL (2000) Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat Sci Rev 19:1155–1231

    Google Scholar 

  6. Allen JRL, Duffy MJ (1998) Temporal and spatial depositional patterns in the Severn Estuary, southwestern Britain: intertidal studies at spring-reap and seasonal scales, 1991–1993. Mar Geol 146:147–171

    Google Scholar 

  7. Andersen TJ, Mikkelsen OA, Moller AL, Pejrup M (2000) Deposition and mixing depths on some European intertidal mudflats based on Pb-210 and Cs-137 activities. Cont Shelf Res 20:1569–1591

    Google Scholar 

  8. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8

    Google Scholar 

  9. Applequist MD (1975) Lead-210 in the deep sea: Pacific Ocean investigations. M. S. Thesis, University of California, San Diego, California, unpublished

  10. Asjes J, Dankers NMJA (1994) Variations in tidal exchange processes between a Dutch Salt Marsh, and the North Sea. In: Mitsch WJ (ed) Global wetlands: old world and new. Elsevier Science B.V, Amsterdam, pp 201–214

    Google Scholar 

  11. Baker ET, Milburn HB, Tennant DA (1988) Field assessment of sediment trap efficiency under varying flow conditions. J Mar Res 46:573–592

    Google Scholar 

  12. Bakker JP, De Leeuw J, Dijkema KS, Leendertse PC, Prins HHT, Rozema J (1993) Salt marshes along the coast of The Netherlands. Hydrobiologia 265:73–95

    Google Scholar 

  13. Bakker JP, Esselink P, Dijkema KS, Van Duin WE, De Jong DJ (2002) Restoration of salt marshes. Hydrobiologia 478:29–51

    Google Scholar 

  14. Bale AJ (1998) Sediment trap performance in tidal waters: comparison of cylindrical and conical collectors. Cont Shelf Res 18:1401–1418

    Google Scholar 

  15. Bartholdy J, Pedersen JBT, Bartholdy ATT (2010) Autocompaction of shallow silty salt marsh clay. Sediment Geol 223:310–319

    Google Scholar 

  16. Baumann RH, Day JW Jr, Miller CA (1984) Mississippi deltaic wetland survival: sedimentation versus coastal submergence. Science 224:1093–1095

    Google Scholar 

  17. Bellucci L, Frignani M, Cochran J, Albertazzi S, Zaggia L, Cecconi G, Hopkins H (2007) Pb-210 and Cs-137 as chronometers for salt marsh accretion in the Venice Lagoon–links to flooding frequency and climate change. J Environ Radioact 97:85–102

    Google Scholar 

  18. Berg G, Esselink P, Groeneweg M, Kiehl K (1997) Micropatterns in Festuca rubra-dominated salt-marsh vegetation induced by sheep grazing. Plant Ecol 132:1–14

    Google Scholar 

  19. Bird MI, Ayliffe LK, Fifield LK, Turney CSM, Cresswell RG, Barrows TT, David B (1999) Radiocarbon dating of “old” charcoal using a wet oxidation, stepped-combustion procedure. Radiocarbon 41:127–140

    Google Scholar 

  20. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518. doi:10.1016/j.quageo.2010.01.002

    Google Scholar 

  21. Bloesch J, Burns NM (1980) A critical-review of sedimentation trap technique. Schweiz Z Hydrol-Swiss J Hydrol 42:15–55

    Google Scholar 

  22. Borsje BW, Van Wesenbeeck BK, Dekker F, Paalvast P, Bouma TJ, Van Katwijk MM, De Vries MB (2011) How ecological engineering can serve in coastal protection. Ecol Eng 37:113–122

    Google Scholar 

  23. Bouma TJ, De Vries MB, Low E, Kusters L, Herman PMJ, Tanczos IC, Temmerman S, Hesselink A, Meire P, Van Regenmortel S, Vries MBD, Tánczos IC, Regenmortel SV (2005) Flow hydrodynamics on a mudflat and in salt marsh vegetation: identifying general relationships for habitat characterisations. Hydrobiologia 540:259–274

    Google Scholar 

  24. Boumans RMJ, Day JW (1993) High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table. Estuaries 16:375–380

    Google Scholar 

  25. Bowman S (1990) Radiocarbon dating (interpreting the past), 1st edition. Book British Museum press

  26. Braskerud BC (2001) The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands. J Environ Qual 30:1447–1457

    Google Scholar 

  27. Brown AG, Carey C, Erkens G, Fuchs M, Hoffmann T, Macaire JJ, Moldenhauer KM, Walling DE (2009) From sedimentary records to sediment budgets: multiple approaches to catchment sediment flux. Geomorphology 108:35–47

    Google Scholar 

  28. Brunet RC, Pinay G, Gazelle F, Roques L (1994) Role of the floodplain and riparian zone in suspended matter and nitrogen-retention in the Adour River, South-West France. Regul Rivers Res Manag 9:55–63

    Google Scholar 

  29. Bruschetti M, Bazterrica C, Fanjul E, Iribarne O (2011) Effect of biodeposition of an invasive polychaete on organic matter content and productivity of the sediment in a coastal lagoon. J Sea Res 66:20–28. doi:10.1016/j.seares.2011.04.007

    Google Scholar 

  30. Brush GS (1989) Rates and patterns of estuarine sediment accumulation. Limnol Oceanogr 34:1235–1246

    Google Scholar 

  31. Bunt JAC, Larcombe P, Jago CF (1999) Quantifying the response of optical backscatter devices and transmissometers to variations in suspended particulate matter. Cont Shelf Res 19:1199–1220

    Google Scholar 

  32. Butler DR, Sawyer CF (2012) Introduction to the special issue- zoogeomorphology and ecosystem engineering. Geomorphology 157–158:1–5

    Google Scholar 

  33. Byers JE, Cuddington K, Jones CG, Talley TS, Hastings A, Lambrinos JG, Crooks JA, Wilson WG (2006) Using ecosystem engineers to restore ecological systems. Trends Ecol Evol 9:493–500

    Google Scholar 

  34. Cahoon DR, Lynch JC (1997) Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A. Mangroves and Salt Marshes 1:173–186

    Google Scholar 

  35. Cahoon DR, Turner RE (1989) Accretion and canal impacts in a rapidly subsiding wetland II. Feldspar marker horizon technique. Estuaries 12:260–268

    Google Scholar 

  36. Cahoon DR, Reed DJ, Day JW (1995) Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Mar Geol 128:1–9

    Google Scholar 

  37. Cahoon DR, Marin PE, Black BK, Lynch JC (2000) A method for measuring vertical accretion, elevation and compaction of soft, shallow water sediments. J Sediment Res 70:1250–1253

    Google Scholar 

  38. Cahoon DR, Lynch JC, Hensel P, Boumans RMJ, Perez BC, Segura B, Day JW (2002a) High-precision measurements of wetland sediment elevation: I. Recent improvements to the sedimentation-erosion table. J Sediment Res 72:730–733

    Google Scholar 

  39. Cahoon DR, Lynch JC, Perez BC, Segura B, Holland RD, Stelly C, Stephenson G, Hensel P (2002b) High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J Sediment Res 72:730–733

    Google Scholar 

  40. Callaway JC, DeLaune RD, Patrick WH (1996) Chernobyl Cs-137 used to determine sediment accretion rates at selected northern European coastal wetlands. Limnol Oceanogr 41:444–450

    Google Scholar 

  41. Chung Y, Chang WC (1995) Pb-210 fluxes and sedimentation-rates in the lower continental-slope between Taiwan and the South Okinawa Trough. Cont Shelf Res 15:149–164

    Google Scholar 

  42. Corenblit D, Baas ACW, Bornette G, Darrozes J, Delmotte S, Francis RA, Gurnell AM, Julien F, Naiman RJ, Steiger J (2011) Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: a review of foundation concepts and current understandings. Earth Sci Rev 106:307–331

    Google Scholar 

  43. Costantini MLC, Rossi L, Fazi S, Rossi D (2009) Detritus accumulation and decomposition in a coastal lake (Acquatina–southern Italy). Aquat Conserv Mar Freshwat Ecosyst 19:566–574

    Google Scholar 

  44. Costanza R, Perez-Maqueo O, Martinez ML, Sutton P, Anderson SJ, Mulder K (2008) The value of coastal wetlands for hurricane protection. Ambio 37:241–248

    Google Scholar 

  45. Culberson SD, Foin TC, Collins JN, Foinij TC (2004) The role of sedimentation in estuarine marsh development within the San Francisco Estuary, California, USA. J Coast Res 20:970–979

    Google Scholar 

  46. Daborn GR, Yeo G, Perillo GME, De Wolfe DJM, Smith S (1991) Bathymetry of Starrs point tidal flat. In: Daborn GR (ed) Littoral investigation of sediment properties, Minas Basin 1989. Acadia Centre for Estuarine Research Pub. 17, Wolfville, Nova Scotia, Canada, pp 69–71

  47. Daleo P, Fanjul E, Casariego AM, Silliman BR, Bertness MD, Iribarne O (2007) Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecol Lett 10:902–908

    Google Scholar 

  48. Dankers N, Binsbergen M, Zegers K, Laane R, Van der Loeff MR (1984) Transportation of water, particulate and dissolved organic and inorganic matter between a salt-marsh and the Ems-Dollard Estuary, the Netherlands. Estuarine Coastal Shelf Sci 19:143–165

    Google Scholar 

  49. Darby SE (2010) Reappraising the geomorphology-ecology link. Earth Surf Process Landforms 35:368–371

    Google Scholar 

  50. Davidson TM, de Rivera CE (2010) Accelerated erosion of saltmarshes infested by the non-native burrowing crustacean Sphaeroma quoianum. Mar Ecol Prog Ser 419:129–136

    Google Scholar 

  51. Davidson-Arnott RGD, Van Proosdij D, Ollerhead J, Schostak L (2002) Hydrodynamics and sedimentation in salt marshes: examples from a macrotidal marsh, Bay of Fundy. Geomorphology 48:209–231

    Google Scholar 

  52. Day JW, Kemp GP, Reed DJ, Cahoon DR, Boumans RM, Suhayda JM, Gambrell R (2011) Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: the role of sedimentation, autocompaction and sea-level rise. Ecol Eng 37:229–240

    Google Scholar 

  53. De Groot AV, Veeneklaas RM, Bakker JP (2011a) Sand in the salt marsh: contribution of high-energy conditions to salt-marsh accretion. Mar Geol 282:240–254

    Google Scholar 

  54. De Groot AV, Veeneklaas RM, Kuijper DPJ, Bakker JP (2011b) Spatial patterns in accretion on barrier-island salt marshes. Geomorphology 134:280–296

    Google Scholar 

  55. Deicke M, Karius V, Jahnke W, Kallweit W, Rebens M, Reyer D (2007) Charakterisierung von Sturmflutablagerungen auf Hallig Hooge. Coastline Reports 9:93–102

    Google Scholar 

  56. DeLaune RD, Jugsujinda A, Peterson GW, Patrick WH (2003) Impact of Mississippi River freshwater reintroduction on enhancing marsh accretionary processes in a Louisiana estuary. Estuarine Coastal Shelf Sci 58:653–662

    Google Scholar 

  57. Diggle PJ, Ribeiro PJ Jr (2007) Model-based geostatistics. Springer Science + Business Media, LLC, New York, 230 pp

    Google Scholar 

  58. Dijkema KS (1987) Geography of salt marshes in Europe. Z Geomorphol NF 31(4):489–499

    Google Scholar 

  59. Dijkema KS (1990) Salt- and brackish marshes around the Baltic Sea and adjacent parts of the North Sea, their vegetation and management. Biol Conserv 51:191–209

    Google Scholar 

  60. Dijkema KS, Van Duin W, Van Dobben HF (2005) Kweldervegetatie op Ameland: effecten van veranderingen in de maaiveldhoogte van Nieuwlandsreid en de Hon. In: Monitoring effecten van bodemdaling op Ameland-Oost. Rapport Nederlandse Aardolie Maatschappij

  61. Dobrowolski R, Pidek IA, Alexandrowicz WP, Hałas S, Pazdur A, Piotrowska N, Buczek A, Urban D, Melke J (2012) Interdisciplinary studies of spring mire deposits from Radzików (South Podlasie Lowland, East Poland) and their significance for palaeoenvironmental reconstructions. Geochronometria 39:10–29

    Google Scholar 

  62. Downing JP (2006) Twenty-five years with OBS sensors: the good, the bad, and the ugly. Cont Shelf Res 26:2299–2318

    Google Scholar 

  63. Downing JP, Beach RA (1989) Laboratory apparatus for calibrating optical suspended solids sensors. Mar Geol 86:243–249

    Google Scholar 

  64. Downing JP, Sternberg RW, Lister CRB (1981) New instrumentation for the investigation of sediment suspension processes in the shallow marine environment. Mar Geol 42:19–34

    Google Scholar 

  65. Duller GAT (2004) Luminescence dating of quaternary sediments: recent advances. J Quat Sci 19:183–192

    Google Scholar 

  66. Duller GAT, Wintle AG (2012) A review of the thermally transferred optically stimulated luminescence signal from quartz for dating sediments. Quat Geochronol 7:6–20

    Google Scholar 

  67. Dyer FMD, Thomson J, Croudace IW, Cox R, Wadsworth RA (2002) Records of change in salt marshes: a radiochronological study of three Westerschelde (SW Netherlands) marshes. Environ Sci Technol 36:854–861

    Google Scholar 

  68. Edeso JM, Merino A, Gonzalez MJ, Marauri P (1999) Soil erosion under different harvesting managements in steep forestlands from northern Spain. Land Degrad Dev 10:79–88

    Google Scholar 

  69. Eklöf JS, Van der Heide T, Donadi S, Van der Zee EM, O’Hara R, Eriksson BK (2011) Habitat-mediated facilitation and counteracting ecosystem engineering interactively influence ecosystem responses to disturbance. PLoS One 6:e23229. doi:10.1371/journal.pone.0023229

    Google Scholar 

  70. Eriksson BK, Van der Heide T, Piersma T, Van der Veer HW, Olff H (2010) Major changes in the ecology of the Wadden Sea: human impacts, ecosystem engineering and sediment dynamics. Ecosystems 13:752–764. doi:10.1007/s10021-010-9352-3

    Google Scholar 

  71. Escapa M, Perillo GME, Iribarne O (2008) Sediment dynamics modulated by burrowing crab activities in contrasting SW Atlantic intertidal habitats. Estuarine Coastal Shelf Sci 80:365–373

    Google Scholar 

  72. Esselink P, Chang ER (2010) Kwelderherstel Noard-Fryslân Bûtendyks: invloed van stormactiviteit op zes jaar proefverkweldering. rapport 01. PUCCIMAR Ecologisch Onderzoek & Advies, Vries

    Google Scholar 

  73. Esselink P, Helder GJF, Aerts BA, Gerdes K (1997) The impact of grubbing by Greylag Geese (Anser anser) on the vegetation dynamics of a tidal marsh. Aquat Bot 55:261–279

    Google Scholar 

  74. Esselink P, Dijkema KS, Reents S, Hageman G (1998) Vertical accretion and profile changes in abandoned man-made tidal marshes in the Dollard estuary, the Netherlands. J Coast Res 14:570–582

    Google Scholar 

  75. Esselink P, Zijlstra W, Dijkema KS, Van Diggelen RV (2000) The effects of decreased management on plant-species distribution patterns in a salt marsh nature reserve in the Wadden Sea. Biol Conserv 93:61–76

    Google Scholar 

  76. Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S, D’Alpaos A, Van de Koppel J, Rybczyk JM, Reyes E, Craft C, Clough J (2011) Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev Geophys 49:RG1002. doi:10.1029/2011RG000359

    Google Scholar 

  77. Fan KC (1998) A non-contact automatic measurement for free-form surface profiles. Comput Integr Manuf Syst 10:277–285

    Google Scholar 

  78. French JR (2000) Coastal defence and earth science conservation. Geogr J 166:280–281

    Google Scholar 

  79. French JR (2006) Tidal marsh sedimentation and resilience to environmental change: exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. Mar Geol 235:119–136

    Google Scholar 

  80. French JR, Burningham H (2003) Tidal marsh sedimentation versus sea-level rise: a southeast England estuarine perspective. Proceedings Coastal Sediments’03, Sheraton Sand Key, Clearwater, Florida, pp 1–14

  81. French JR, Spencer T (1993) Dynamics of sedimentation in a tide-dominated Backbarrier Salt-Marsh, Norfolk, UK. Mar Geol 110:315–331

    Google Scholar 

  82. French JR, Spencer T, Murray ASL, Arnold NS (1995) Geostatistical analysis of sediment deposition in two small tidal wetlands, Norfolk, U.K. J Coast Res 11:308–321

    Google Scholar 

  83. Frignani M, Langone L (1991) Accumulation rates and 137Cs distributions in sediments off the Po River delta and the Emilia-Romagna coast (northwestern Adriatic Sea, Italy). Cont Shelf Res 6:525–542

    Google Scholar 

  84. Fugate DC, Friedrichs CT (2002) Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST. Cont Shelf Res 22:1867–1886

    Google Scholar 

  85. Gardner WD (1980) Sediment trap dynamics and calibration - a laboratory evaluation. J Mar Res 38:17–39

    Google Scholar 

  86. Gartner JW, Cheng RT (2001) The promises and pitfalls of estimating total suspended solids based on backscatter intensity from acoustic Doppler current profiler. Proceedings of the Seventh Federal Interagency Sedimentation Conference, March 25 to 29, 2001, Reno, Nevada

  87. Gedan KB, Kirwan ML, Wolanski E, Barbier EB, Silliman BR (2011) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climate Change 106:7–29

    Google Scholar 

  88. Gelen A, Diaz O, Simon MJ, Herrera E, Soto J, Gomez J, Rodenas C, Beltran J, Ramirez M (2003) Pb-210 dating of sediments from Havana Bay. J Radioanal Nucl Chem 256:561–564

    Google Scholar 

  89. Glenn NF, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2006) Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148

    Google Scholar 

  90. Glenn NF, Spaete LP, Sankey TT, Derryberry DR, Hardegree SP, Mitchell JJ (2011) Errors in LiDAR-derived shrub height and crown area on sloped terrain. J Arid Environ 75:377–382

    Google Scholar 

  91. Goldberg ED, Gambles E, Griffin JJ, Koide M (1977) Pollution history in Narragansett Bay as recorded in its sediments. Estuar Coast Mar Sci 5:549–561

    Google Scholar 

  92. González JL, Törnqvist TE (2009) A new late Holocene sea-level record from the Mississippi delta: evidence for a climate/sea level connection? Quat Sci Rev 28:1737–1749

    Google Scholar 

  93. Goodson JM, Gurnell AM, Angold PG, Morrissey IP (2003) Evidence for hydrochory and the deposition of viable seeds within winter flow-deposited sediments: the River Dove, Derbyshire, UK. River Res Appl 19:317–334

    Google Scholar 

  94. Goslar T, Czernik J (2000) Sample preparation in the Gliwice Radiocarbon Laboratory for AMS 14C dating of sediments. Geochronometria 18:1–8

    Google Scholar 

  95. Grant J, Turner SJ, Legendre P, Hume TM, Bell RG (1997) Patterns of sediment reworking and transport over small spatial scales on an intertidal sandflat, Manukau Harbour, New Zealand. J Exp Mar Biol Ecol 216:33–50

    Google Scholar 

  96. Grazcyk DJ, Robertson DM, Rose WJ, Steuer JJ (2000) Comparison of water-quality samples collected by Siphon Samplers and Automatic Samplers in Wisconsin. United States Geological Survey, United States Geological Survey Fact Sheet FS-067-00, Middleton, Wisconsin

  97. Gregory KJ, Walling DE (1971) Field measurements in the drainage basin. Geography 56:277–292

    Google Scholar 

  98. Hakanson L, Floderus S, Wallin M (1989) Sediment trap assemblages—a methodological description. Hydrobiologia 176:481–490

    Google Scholar 

  99. Hancock GR, Murphy D, Evans KG (2010) Hillslope and catchment scale soil organic carbon concentration: an assessment of the role of geomorphology and soil erosion in an undisturbed environment. Geoderma 155:36–45

    Google Scholar 

  100. Hargrave BT, Burns NM (1979) Assessment of sediment trap collection efficiency. Limnol Oceanogr 24:1124–1136

    Google Scholar 

  101. He Q, Walling DE (1996) Use of fallout Pb-210 measurements to investigate longer-term rates and patterns of overbank sediment deposition on the floodplains of lowland rivers. Earth Surf Process Landforms 21:141–154

    Google Scholar 

  102. Hippensteel SP (2005) Limiting the limits of bioturbation, or at least focusing on the positive. Palaios 20:319–320

    Google Scholar 

  103. Huang C-H, Bradford JM (1990) Portable laser scanner for measuring soil surface roughness. Soil Sci Soc Am J 54(5):1402–1406. doi:10.2136/sssaj1990.03615995005400050032x

    Google Scholar 

  104. Huntley DJ, Godfreysmith DI, Thewalt MLW (1985) Optical dating of sediments. Nature 313:105–107

    Google Scholar 

  105. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69(3):373–386

    Google Scholar 

  106. Jordan TE, Valiela I (1983) Sedimentation and resuspension in a New-England Salt-Marsh. Hydrobiologia 98:179–184

    Google Scholar 

  107. Kaneko A, Koterayama W (1988) ADCP measurements from a towed fish. Eos 69:643–644

    Google Scholar 

  108. Kaneko A, Koterayama W, Honji H, Mizuno S, Kawatate K, Le Gordon R (1990) Cross-stream survey of the upper 400 m of the Kuroshio by an ADCP on a towed fish. Deep-Sea Res 37:875–889

    Google Scholar 

  109. Kaye CA, Barghoorn ES (1964) Late quaternary sea-level change and crustal rise at Boston, Massachusetts, with notes on the autocompaction of peat. Geol Soc Am Bull 75:63–80

    Google Scholar 

  110. Keim RF, Skaugset AE, Bateman DS (1999) Digital terrain modeling of small stream channels with a total-station theodolite. Adv Water Resour 23:41–48

    Google Scholar 

  111. Kineke GC, Sternberg RW (1992) Measurements of high concentration suspended sediments using the optical backscatterance sensor. Mar Geol 108:253–258

    Google Scholar 

  112. Kirchner G, Ehlers H (1998) Sediment geochronology in changing coastal environments: potentials and limitations of the Cs-137 and Pb-210 methods. J Coast Res 14:483–492

    Google Scholar 

  113. Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37:L23401

    Google Scholar 

  114. Kleiss BA (1996) Sediment retention in a bottomland hardwood wetland in Eastern Arkansas. Wetlands 16:321–333

    Google Scholar 

  115. Knaus RM, Vangent DL (1989) Accretion and canal impacts in a rapidly subsiding wetland.3. a new soil-horizon marker method for measuring recent accretion. Estuaries 12:269–283

    Google Scholar 

  116. Kozerski HP, Leuschner K (1999) Plate sediment traps for slowly moving waters. Water Res 33:2913–2922

    Google Scholar 

  117. Krauss KW, Cahoon DR, Allen JA, Ewel KC, Lynch JC, Cormier N (2010) Surface elevation change and susceptibility of different mangrove zones to sea-level rise on pacific high islands of Micronesia. Ecosystems 13:129–143

    Google Scholar 

  118. Kuijper DPJ, Bakker JP (2012) Below- and above-ground vertebrate herbivory and abiotic factors alternate in shaping salt-marsh plant communities. J Exp Mar Biol Ecol 432:17–28

    Google Scholar 

  119. Kunzendorf H (1998) Marine mineral exploration–realities and strategies at the end of the 1990s. Mar Georesour Geotechnol 16:121–131

    Google Scholar 

  120. Lavine A, Gardner JN, Reneau SL (2003) Total station geologic mapping: an innovative approach to analyzing surface-faulting hazards. Eng Geol 70:71–91

    Google Scholar 

  121. Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) Lidar remote sensing for ecosystem studies. BioScience 52:19–30

    Google Scholar 

  122. Leonard LA, Luther ME (1995) Flow hydrodynamics in tidal marsh canopies. Limnol Oceanogr 40:1474–1484

    Google Scholar 

  123. Leonard LA, Hine AC, Luther ME (1995) Surficial sediment transport and deposition processes in a Juncus roemerianus marsh, West-Central Florida. J Coast Res 11:322–336

    Google Scholar 

  124. Lian OB, Roberts RG (2006) Dating the quaternary: progress in luminescence dating of sediments. Quat Sci Rev 25:2449–2468

    Google Scholar 

  125. Madsen AT, Murray AS (2009) Optically stimulated luminescence dating of young sediments: a review. Geomorphology 109:3–16

    Google Scholar 

  126. Madsen AT, Murray AS, Andersen TJ, Pejrup M, Breuning-Madsen H (2005) Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating. Mar Geol 214:251–268

    Google Scholar 

  127. Madsen AT, Murray AS, Jain M, Andersen TJ, Pejrup M (2011) A new method for measuring bioturbation rates in sandy tidal flat sediments based on luminescence dating. Estuarine Coastal Shelf Sci 92:464–471

    Google Scholar 

  128. Mansikkaniemi H (1985) Sedimentation and water quality in the flood basin of the river Kyrˇsnjoki in Finland. Fennia 163:155–194

    Google Scholar 

  129. McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–556

    Google Scholar 

  130. Mermillod-Blondin F (2011) The functional significance of bioturbation and biodeposition on biogeochemical processes at the water–sediment interface in freshwater and marine ecosystems. J N Am Bentholl Soc 30:770–778

    Google Scholar 

  131. Milan CS, Swenson EM, Turner RE, Lee JM (1995) Assessment of the Cs-137 method for estimating sediment accumulation rates - Louisiana salt marshes. J Coast Res 11:296–307

    Google Scholar 

  132. Möller I (2006) Quantifying saltmarsh vegetation and its effect on wave height dissipation: results from a UK East coast saltmarsh. Estuarine Coastal Shelf Sci 69(3–4):337–351

    Google Scholar 

  133. Murray AS, Wintle AG (2000) Luminescence dating of quartz using an improved single-aliqout regenerative-dose protocol. Radiat Meas 32:57–73

    Google Scholar 

  134. Murray AS, Wintle AG (2003) The single aliqout regenerative dose protocol: potential for improvements in reliability. Radiat Meas 37:377–381

    Google Scholar 

  135. Murray AB, Knaapen MAF, Tal M, Kirwan ML (2008) Biomorphodynamics: physical-biological feedbacks that shape landscapes. Water Resour Res 44:w11301. doi:10.1029/2007WR006410

    Google Scholar 

  136. Nagihara S, Mulligan KR, Xiong W (2004) Use of a three-dimensional laser scanner to digitally capture the topography of sand dunes in high spatial resolution. Earth Surf Process Landforms 29:391–398

    Google Scholar 

  137. Neumann FH, Kagan EJ, Schwab MJ, Stein M (2007) Palynology, sedimentology and palaeoecology of the late Holocene Dead Sea. Quat Sci Rev 26:1476–1498

    Google Scholar 

  138. Nie YH, Suayah IB, Benninger LK, Alperin MJ (2001) Modeling detailed sedimentary Pb-210 and fallout Pu-239, Pu-240 profiles to allow episodic events: an application in Chesapeake Bay. Limnol Oceanogr 46:1425–1437

    Google Scholar 

  139. Nielsen N (1935) Eine Methode zur exacten sedimentationsmessung: studien über die marschbildung auf der halbinseln Skållingen. Det. Kgl. Danske videnskabernes selskab. Biol Med 12:1–97

    Google Scholar 

  140. Nielsen N, Nielsen J (2002) Vertical growth of a young back barrier salt marsh, skallingen, SW Denmark. J Coast Res 18:287–299

    Google Scholar 

  141. Niering WA (1997) Tidal wetland restoration and creation along the east coast of North America. In: Urbanska KM, Webb NR, Edwards PS (eds) Restoration ecology and sustainable development. Cambridge University Press, Cambridge, pp 259–285

    Google Scholar 

  142. Nikulina A (2008) The imprint of anthropogenic activity versus natural variability in the fjords of Kiel Bight: evidence from sediments. Ph.D. Thesis, University of Kiel, unpublished

  143. Nilsson M (1996) Estimation of tree heights and stand volume using an airborne Lidar system. Remote Sens Environ 56:1–7

    Google Scholar 

  144. Olff H, De Leeuw J, Bakker JP, Platerink RJ, Van Wijnen HJ, De Munck W (1997) Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. J Ecol 85:799–814

    Google Scholar 

  145. Ollerhead J, Huntley DJ, Berger GW (1994) Luminescence dating of sediments from Buctouche spit, New-Brunswick. Can J Earth Sci 31:531–532

    Google Scholar 

  146. Orson RA, Warren RS, Niering WA (1998) Interpreting sea level rise and rates of vertical marsh accretion in a Southern New England Tidal Salt Marsh. Estuarine Coastal Shelf Sci 47:419–429

    Google Scholar 

  147. Osborne PD, Greenwood B (1992) Frequency dependent cross-shore suspended sediment transport 1: a non-barred shoreface. Mar Geol 106:1–24

    Google Scholar 

  148. Parker AG, Lucas AS, Walden J, Goudie AS, Robinson MA, Allen TG (2008) Late Holocene geoarchaeological investigation of the Middle Thames floodplain at Dorney, Buckinghamshire, UK: an evaluation of the bronze age, iron age, roman and saxon landscapes. Geomorphology 101:471–483

    Google Scholar 

  149. Parkhurst DL (1928) A new first order theodolite. J Frankl Inst 206:623–629

    Google Scholar 

  150. Pasternack G, Brush GS (1998) Sedimentation cycles in a River-Mouth Tidal Freshwater Marsh. Estuaries 21:407–415

    Google Scholar 

  151. Pennington W, Cambray RS, Eakins JD, Harkeness D (1976) Radionuclide dating of the recent sediments of Blelham Tarn. Freshw Biol 6:317–331

    Google Scholar 

  152. Perillo GME, Dos Santos EP, Piccolo MC (2003) An inexpensive instrument for sediment erosion-accumulation rate measurement in intertidal environments. Wetl Ecol Manag 11:195–198

    Google Scholar 

  153. Petzold B, Reiss P, Stössel W (1999) Laser scanning — surveying and mapping agencies are using a new technique for the derivation of digital terrain models. ISPRS J Photogramm Remote Sens 54:95–104

    Google Scholar 

  154. Pietsch TJ (2009) Optically stimulated luminescence dating of young (<500 years old) sediments: testing estimates of burial dose. Quat Geochronol 4:406–422

    Google Scholar 

  155. Pinay G, Ruffinoni C, Fabre A (1995) Nitrogen cycling in 2 riparian forest soils under different geomorphic conditions. Biogeochemistry 30:9–29

    Google Scholar 

  156. Reed J (1988) Sediment dynamics and deposition in a retreating coastal salt marsh. Estuarine Coastal Shelf Sci 26:67–79

    Google Scholar 

  157. Reed DJ (1989) Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay, Louisiana: the role of winter storms. Estuaries 12:222

    Google Scholar 

  158. Reed DJ, Spencer T, Murray AL, French JR, Leonard L (1999) Marsh surface sediment deposition and the role of tidal creeks: implications for created and managed coastal marshes. J Coast Conserv 5:81–90

    Google Scholar 

  159. Reimann T, Naumann M, Tsukamoto S, Frechen M (2010) Luminescence dating of coastal sediments from the Baltic Sea coastal barrier-spit Darss–Zingst, NE Germany. Reconstr Landsc Chang Quat Environ 122:264–273

    Google Scholar 

  160. Reinhardt L, Jerolmack D, Cardinale BJ, Vanacker V, Wright J (2010) Dynamic interactions of life and its landscape: feedbacks at the interface of geomorphology and ecology. Earth Surf Process Landforms 35:78–101

    Google Scholar 

  161. Ridd P, Day G, Thomas S, Harradence J, Fox D, Bunt J, Renagi O, Jago C (2001) Measurement of sediment deposition rates using an optical backscatter sensor. Estuarine Coastal Shelf Sci 52:155–163

    Google Scholar 

  162. Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan using 210Pb and 137Cs. Geochim Cosmochim Acta 39:285–304

    Google Scholar 

  163. Roman CT, Peck JA, Allen JRL, King JW, Appleby PG (1997) Accretion of a New England (USA) salt marsh in response to inlet migration, storms, and sea-level rise. Estuarine Coastal Shelf Sci 45:717–727

    Google Scholar 

  164. Sabatier P, Dezileau L, Briqueu L, Bouchette F, Martinez P, Siani G, Raynal O, Von Grafenstein U (2012) 7000 years of paleostorm activity in the NW Mediterranean Sea in response to Holocene climate events. Quat Res 77:1–11

    Google Scholar 

  165. Saynor MJ, Erskine WD (2006) Spatial and temporal variations in bank erosion on sand-bed streams in the seasonally wet tropics of northern Australia. Earth Surf Process Landforms 31:1080–1099

    Google Scholar 

  166. Saynor MJ, Loughran RJ, Erskine WD, Scott PF (1994) Sediment movement on hill slopes measured by caesium-137 and erosion pins. Variability in Streams Erosion and Sediment Transport. Proceedings of the Canberra Symposium. IAHS Publication, pp 87–93

  167. Scharpenseel HW, Schiffman H (1977) Soil radiocarbon analysis and soil dating. Surv Geophys 3:143–156

    Google Scholar 

  168. Schoot PM, De Jong JEA (1988) Sedimentation and erosion measurements with the use of the Sed-Eros Table, SET. Notitie DDM1 82.401. Rijkswaterstaat

  169. Schrama MJJ, Van Boheemen L, Berg M, Olff H (2012) Amelioration of stress for plants on a salt marsh by the macrodetritivore Orchestia gamarellus. Dissertation, University of Groningen

  170. Schrama MJJ, Heijing P, Van Wijnen HJ, Bakker JP, Berg MP, Olff H (2012). Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia. doi:10.1007/s00442-012-2484-8

  171. Schuerch M, Rapaglia J, Zaggia L, Vafeidis A (2012a) Sediment dynamics on a salt marsh platform in the German Wadden Sea. Unpublished manuscript. Dissertation, University of Kiel, Germany

  172. Schuerch M, Rapaglia J, Liebetrau V, Vafeidis A, Reise K (2012b) Salt marsh accretion and storm tide variation: an example from a barrier island in the North Sea. Estuar Coasts 35:486–500

    Google Scholar 

  173. Shaw J, Ceman J (1999) Salt-marsh aggradation in response to late-Holocene sea-level rise at Amherst Point, Nova Scotia, Canada. Holocene 9:439–451

    Google Scholar 

  174. Sirvent J, Desir G, Gutierrez M, Sancho C, Benito G (1997) Erosion rates in badland areas recorded by collectors, erosion pins and profilometer techniques (Ebro Basin, NE-Spain). Geomorphology 18:61–75

    Google Scholar 

  175. Statzner B (2012) Geomorphological implications of engineering bed sediments by lotic animals. Geomorphology 157–158:49–65

    Google Scholar 

  176. Steiger J, Gurnell AM, Goodson JM (2003) Quantifying and characterizing contemporary riparian sedimentation. River Res Appl 19:335–352

    Google Scholar 

  177. Stoddart DR, Reed DJ, French JR (1989) Understanding salt-marsh accretion, Scolt Head Island, Norfolk, England. Estuaries 12:228–236

    Google Scholar 

  178. Stokes DJ, Healy TR, Cooke PJ (2010) Expansion dynamics of monospecific, temperate mangroves and sedimentation in two embayments of a barrier-enclosed lagoon, Tauranga Harbour, New Zealand. J Coast Res 261:113–122

    Google Scholar 

  179. Struyf E, Van Damme S, Gribsholt B, Bal K, Beauchard O, Middelburg JJ, Meire P (2007) Phragmites australis and silica cycling in tidal wetlands. Aquat Bot 87:134–140

    Google Scholar 

  180. Stumpf RP (1983) The process of sedimentation on the surface of a salt-marsh. Estuarine Coastal Shelf Sci 17:495–508

    Google Scholar 

  181. Talley TS, Crooks JA, Levin LA (2001) Habitat utilization and alteration by the invasive burrowing isopod, Sphaeroma quoyanum, in California salt marshes. Mar Biol 138:561–573

    Google Scholar 

  182. Tanaka G, Komatsu T, Saito Y, Nguyen DP, Vu QL (2011) Temporal changes in ostracod assemblages during the past 10,000 years associated with the evolution of the Red River delta system, northeastern Vietnam. Mar Micropaleontol 81:77–87

    Google Scholar 

  183. Temmerman S, Govers G, Wartel S, Meire P (2003a) Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surf Process Landforms 28:739–755

    Google Scholar 

  184. Temmerman S, Govers G, Meire P, Wartel S (2003b) Modelling long-term tidal marsh growth under changing tidal conditions and suspended sediment concentrations, Scheldt estuary, Belgium. Mar Geol 193:151–169

    Google Scholar 

  185. Temmerman S, Govers G, Wartel S, Meire P (2004a) Modelling estuarine variations in tidal marsh sedimentation: response to changing sea level and suspended sediment concentrations. Mar Geol 212:1–19

    Google Scholar 

  186. Temmerman S, Govers G, Meire P, Wartel S (2004b) Simulating the long-term development of levee-basin topography on tidal marshes. Geomorphology 63:39–55

    Google Scholar 

  187. Temmerman S, Bouma TJ, Govers G, Lauwaet D (2005) Flow paths of water and sediment in a tidal marsh: relations with marsh developmental stage and tidal inundation height. Estuaries 28:338–352

    Google Scholar 

  188. Temmerman S, Moonen P, Schoelynck J, Govers G, Bouma TJ (2012) Impact of vegetation die-off on spatial flow patterns over a tidal marsh. Geophys Res Lett 39:L03406

    Google Scholar 

  189. Thomas S, Ridd PV (2004) Review of methods to measure short time scale sediment accumulation. Mar Geol 207:95–114

    Google Scholar 

  190. Thomas S, Ridd PV, Smith PJ (2002) New instrumentation for sediment dynamics studies. Mar Technol Soc J 36:55–58

    Google Scholar 

  191. Toledo MB, Bush MB (2008) Vegetation and hydrology changes in Eastern Amazonia inferred from a pollen record. An Acad Bras Sci 80:191–203

    Google Scholar 

  192. Tsai SW, Chung Y (1989) Pb-210 in the sediments of Taiwan Strait. Acta Oceanogr Taiwan 22:1–13

    Google Scholar 

  193. Tuner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steiniger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18:306–314

    Google Scholar 

  194. Turner RE, Swenson EM, Milan CS (2001) Organic and inorganic contributions to vertical accretion in salt marsh sediments. In: Weinstein M, Kreeger M (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishing, Dordrecht, pp 583–864

    Google Scholar 

  195. Turney CSM, Lowe JJ, Wastegård S, Cooper R, Roberts SJ (2001) The development of a tephrochronological framework for the last glacial–holocene transition in NW Europe. In: Juvigne J, Raynal J-P (eds) Tephras: chronology and archeology. Les Dossiers de l’Arche´o-Logis, No. 1, Goudet, CRDP: Clermont Ferrand, 101–109

  196. Turney CSM, Van den Burg K, Wastega S, Davies SM, Whitehouse NJ, Pilcher JR, Callaghan C (2006) North European last glacial–interglacial transition (LGIT; 15–9 ka) tephrochronology: extended limits and new events. J Quat Sci 21:335–345

    Google Scholar 

  197. Van der Heide T, Van Nes EH, Geerling GW, Smolders AJP, Bouma TJ, Van Katwijk MM (2007) Positive feedbacks in seagrass ecosystems: implications for success in conservation and restoration. Ecosystems 10:1311–1322

    Google Scholar 

  198. Van Duin WE, Dijkema KS, Zegers J (1997) Veranderingen in Bodemhoogte (opslibbing, Erosie En Inklink) in De Peazemerlannen. IBN-report 326, Wageningen

  199. Van Duin WE, Dijkema KS, Van Leeuwen PW (2007) Uitgangssituatie maaiveldhoogte en kweldervegetatie in de Peazemerlannen (2006). Wageningen IMARES, Texel. Rapport C128/07. 79 p

  200. Van Katwijk MM, Hermus DCR, De Jong DJ, Asmus RM, De Jonge VN (2000) Habitat suitability of the Wadden Sea for restoration of Zostera marina beds. Helgol Mar Res 54:117–128

    Google Scholar 

  201. Van Proosdij D, Davidson-Arnott RGD, Ollerhead J (2006) Controls on spatial patterns of sediment deposition across a macro-tidal salt marsh surface over single tidal cycles. Estuarine Coastal Shelf Sci 69:64–86

    Google Scholar 

  202. Van Wesenbeeck BK, van de Koppel J, Herman PMJ, Bakker JP, Bouma TJ (2007) Biomechanical warfare in ecology; negative interactions between species by habitat modification. Oikos 116:742–750

    Google Scholar 

  203. Van Wijnen HJ, Bakker JP (1999) Nitrogen and phosphorus limitation in a coastal barrier salt marsh: the implications for vegetation succession. J Ecol 87:265–272

    Google Scholar 

  204. Van Wijnen HJ, Bakker JP (2001) Long-term surface elevation change in salt marshes: a prediction of marsh response to future sea-level rise. Estuarine Coastal Shelf Sci 52:381–390

    Google Scholar 

  205. Veihe A, Jensen NH, Schiøtz IG, Nielsen SL (2011) Magnitude and processes of bank erosion at a small stream in Denmark. Hydrol Process 25:1597–1613

    Google Scholar 

  206. Viles HA, Naylor LA, Carter NEA, Chaput D (2008) Biogeomorphological disturbance regimes: progress in linking ecological and geomorphological systems Biogeomorphological disturbance regimes. Earth Surf Process Landforms 33:1419–1435

    Google Scholar 

  207. Voulgaris G, Meyers ST (2004) Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek. Cont Shelf Res 24:1659–1683

    Google Scholar 

  208. Walling D, He Q (1999) Using fallout lead-210 measurements to estimate soil erosion on cultivated land. Soil Sci Soc Am J 63:1404–1412

    Google Scholar 

  209. Wamsley TV, Cialone MA, Smith JM, Atkinson JH, Rosati JD (2010) The potential of wetlands in reducing storm surge. Ocean Eng 37:59–68

    Google Scholar 

  210. Wang F, Wang H, Li J, Pei Y, Fan C, Tian L, Shang Z, Song M, Geng Y (2008) /sup 210/Pb and/sup 137/Cs measurements in the Circum Bohai Sea coastal region: sedimentation rates and implications. Front Earth Sci China 2:276–282

    Google Scholar 

  211. Watson EB (2004) Changing elevation, accretion, and tidal marsh plant assemblages in a south San Fransisco Bay tidal marsh. Estuar Coasts 27:684–698. doi:10.1007/BF02907653

    Google Scholar 

  212. Watson EB (2008) Marsh expansion at calaveras point marsh, South San Francisco Bay, California. Estuarine Coastal Shelf Sci 78:593–602

    Google Scholar 

  213. Wattayakorn G, Wolanski E, Kjerfve B (1990) Mixing, trapping and outwelling in the Klong Ngao Mangrove Swamp, Thailand. Estuarine Coastal Shelf Sci 31:667–688

    Google Scholar 

  214. Williams H (2003) Modeling shallow autocompaction in coastal marshes using cesium-137 fallout: preliminary results from the Trinity River Estuary, Texas. J Coast Res 19:180–188

    Google Scholar 

  215. Wolters M, Geertsema J, Chang ER, Veeneklaas RM (2004) Astroturf seed traps for studying hydrochory. Funct Ecol 18:141–147

    Google Scholar 

  216. Wolters M, Bakker JP, Bertness MD, Jefferies RL, Möller I (2005) Saltmarsh erosion and restoration in south-east England: squeezing the evidence requires realignment. J Appl Ecol 42:844–851

    Google Scholar 

  217. Wright JP, Jones CG, Flecker AS (2002) An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132:96–101

    Google Scholar 

  218. Yu SY, Törnqvist TE, Hu P (2012) Quantifying lithospheric subsidence rates underneath the Mississippi delta. Earth Planet Sci Lett 331–332:21–30

    Google Scholar 

  219. Zhang L, Mitsch WJ (2007) Sediment chemistry and nutrient influx in a hydrologically restored bottomland hardwood forest in Midwestern USA. River Res Appl 23:1026–1037

    Google Scholar 

  220. Zuniga D, Calafat A, Heussner S, Miserocchi S, Sanchez-Vidal A, Garcia-Orellana J, Canals M, Sanchez-Cabeza JA, Carbonne J, Delsaut N, Saragoni G (2008) Compositional and temporal evolution of particle fluxes in the open Algero-Balearic basin (Western Mediterranean). J Mar Syst 70:196–214

    Google Scholar 

  221. Zwolsman JJG, Berger GW, Van Eck GTM (1993) Sediment accumulation rates, historical input, postdepositional mobility and retention of major elements and trace-metals in salt-marsh sediments of the Scheldt Estuary, Sw Netherlands. Mar Chem 44:73–94

    Google Scholar 

websites

  1. http://www.campbellsci.ca/Download/LitNote_obsbasics.pdf

  2. http://www.csc.noaa.gov/digitalcoast/data/click/index.html

  3. http://www.pwrc.usgs.gov/set/

Download references

Acknowledgments

We wish to thank the participants of the Sedimentation workshop in Groningen for their contributions and discussion. We also thank Dick Visser for enhancing the figures. S.N. was funded by the Waddenfonds and E.C.K. by the Dutch Petroleum Company (Nederlandse Aardolie Maatschappij, NAM). We thank an anonymous reviewer for comments and Esther Chang for revising the English language.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to S. Nolte or E. C. Koppenaal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nolte, S., Koppenaal, E.C., Esselink, P. et al. Measuring sedimentation in tidal marshes: a review on methods and their applicability in biogeomorphological studies. J Coast Conserv 17, 301–325 (2013). https://doi.org/10.1007/s11852-013-0238-3

Download citation

Keywords

  • Accretion
  • Elevation change
  • Estuary
  • Salt marsh
  • Sediment deposition
  • Suspended sediment