Do tourism applications’ quality and user experience influence its acceptance by tourists?

Abstract

The aim of the present study is to improve the understanding regarding the acceptance of tourism apps available for the marketing and tourism destination. For this purpose, the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) was adapted to investigate the determinants of users’ behavioral intention for mobile tourism applications according to the quality and user experience of tourism applications. In order to understand whether the design of and user experience with tourist applications influence those apps’ use and acceptance, the variable Trust in the Internet operator was added to UTAUT2 as an external variable, as well as App Quality and App User Experience. To investigate the determinants of the users’ behavioral intention, a survey of 552 users was performed, and the data were analyzed using the partial least squares path modeling in Spain and Portugal. The results contribute to a deeper understanding of user needs when they decide whether to download a mobile tourism app and whether to use it at their destination.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Agrebi S, Jallais J (2015) Explain the intention to use smartphones for mobile shopping. J Retail Consum Serv 22:16–23. https://doi.org/10.1016/j.jretconser.2014.09.003

    Google Scholar 

  2. Ahas R, Aasa A, Roose A, Mark Ü, Silm S (2008) Evaluating passive mobile positioning data for tourism surveys: an Estonian case study. Tour Manag 29(3):469–486. https://doi.org/10.1016/j.tourman.2007.05.014

    Google Scholar 

  3. Ajzen I (1985) From intentions to actions: a theory of planned behavior. In: Kuhl J, Beckmann J (eds) Action control: from cognition to behavior, SSSP Springer Series in Soc Psychol. Springer, Berlin, pp 11–39. https://doi.org/10.1007/978-3-642-69746-3_2

    Google Scholar 

  4. Ajzen I (1991) The theory of planned behavior. Organ Behav Hum Dec 50(2):179–211

    Article  Google Scholar 

  5. Alfaro I, Nardon M, Planesi F, Stock O, Zancanaro M (2005) Using cinematic techniques on mobile devices for cultural tourism. J Inf Technol Tour 7(2):61–71. https://doi.org/10.3727/1098305054517309

    Google Scholar 

  6. Al-Gahtani SS, Hubona GS, Wang J (2007) Information technology (IT) in Saudi Arabia: culture and the acceptance and use of IT. Inf Manag 44(8):681–691. https://doi.org/10.1016/j.im.2007.09.002

    Google Scholar 

  7. Alqahtani M, Mohammad H (2015) Mobile applications’ impact on student performance and satisfaction. Turk Online J Educ T-Tojet 14(4):102–112

    Google Scholar 

  8. Al-Qeisi K, Dennis C, Alamanos E, Jayawardhena C (2014) Website design quality and usage behavior: unified theory of acceptance and use of technology. J Bus Res 67(11):2282–2290. https://doi.org/10.1016/j.jbusres.2014.06.016

    Google Scholar 

  9. Balasubramanian K, Balraj A, Kumar J (2015) Customer preference’s to select a restaurant through smart phone applications: an exploratory study. Adv Sci Lett 21(5):1489–1493. https://doi.org/10.1166/asl.2015.6081

    Google Scholar 

  10. Bankole FO, Bankole OO, Brown I (2011) Mobile banking adoption in Nigeria. El J Inf Syst Dev C 47(2):1–23

    Google Scholar 

  11. Baptista G, Oliveira T (2015) Understanding mobile banking: the unified theory of acceptance and use of technology combined with cultural moderators. Comput Hum Behav 50:418–430. https://doi.org/10.1016/j.chb.2015.04.024

    Google Scholar 

  12. Barclay D, Higgins C, Thompson R (1995) The Partial Least Squares (PLS) A roach to causal modelling: personal computer adoption and use as an illustration. Technol Stud Spec Issue Res Methodol 2(2):285–309

    Google Scholar 

  13. Benitez J, Henseler J, Castillo A, Schuberth F (2020) How to perform and report an impactful analysis using partial least squares: guidelines for confirmatory and explanatory IS research. Inf Manag 57(2):1. https://doi.org/10.1016/j.im.2019.05.003

    Google Scholar 

  14. Bollen KA (1989) Structural equations with latent variables. Willey, New York

    Book  Google Scholar 

  15. Bouncken RB, Kraus S, Roig-Tierno N (2019) Knowledge-and innovation-based business models for future growth: digitalized business models and portfolio considerations. Rev Manag Sci. https://doi.org/10.1007/s11846-019-00366-z

    Google Scholar 

  16. Brown SA, Venkatesh V (2005) Model of adoption of technology in households: a baseline model test and extension incorporating household life cycle. MIS Q. https://doi.org/10.2307/25148690

    Google Scholar 

  17. Bruner GC, Kumar A (2005) Explaining consumer acceptance of handheld Internet devices. J Bus Res 58(5):553–558. https://doi.org/10.1016/j.jbusres.2003.08.002

    Google Scholar 

  18. Buhalis D, Law R (2008) Progress in information technology and tourism management: 20 years on and 10 years after the Internet—the state of eTourism research. Tour Manag 29(4):609–623. https://doi.org/10.1016/j.tourman.2008.01.005

    Google Scholar 

  19. Carmines EG, Zeller RA (1979) Reliability and validity assessment. Beverly Hills, CA, Sage

    Book  Google Scholar 

  20. Castañeda-García JA, Martínez-Heredia MJ, Rodríguez-Molina MA (2015) Explicando la lealtad del turista hacia las aplicaciones móviles. XVIII Cong Mark AEMARK. Pamplona, Spain, pp 83–101

    Google Scholar 

  21. Chang SE, Shen WC, Liu AY (2016) Why mobile users trust smartphone social networking services? A PLS-SEM approach. J Bus Res 69(11):4890–4895. https://doi.org/10.1016/j.jbusres.2016.04.048

    Google Scholar 

  22. Cheung R, Vogel D (2013) Predicting user acceptance of collaborative technologies: an extension of the technology acceptance model for e-learning. Comput Educ 63:160–175. https://doi.org/10.1016/j.compedu.2012.12.003

    Google Scholar 

  23. Chin WW (1998) The partial least squares approach to structural equation modeling. In: Marcoulides GA (ed) Modern methods for business research. Lawrence Erlbaum Associates Publisher, Mahwah, pp 295–336

    Google Scholar 

  24. Chin WW (2010) How to write up and report PLS analyses. In: Esposito Vinzi V, Chin W, Henseler J, Wang H (eds) Handbook of partial least squares: Springer Handbooks of Computational Statistics. Springer, Berlin, pp 655–690. https://doi.org/10.1007/978-3-540-32827-8_29

    Google Scholar 

  25. Chin WW, Newsted PR (1999) Structural equation modeling analysis with small samples using partial least squares. Stat Strateg Small Sample Res 2:307–342

    Google Scholar 

  26. Cho I, Park H (2016) The influential factors on the diffusion of smartwatches in Korea. Int J Technol Manag 72(1):230–251. https://doi.org/10.1504/IJTM.2016.080537

    Google Scholar 

  27. Chong AYL (2013) Predicting m-commerce adoption determinants: a neural network approach. Expert Syst Appl 40(2):523–530. https://doi.org/10.1016/j.eswa.2012.07.068

    Google Scholar 

  28. Chopdar PK, Korfiatis N, Sivakumar VJ, Lytras MD (2018) Mobile shopping apps adoption and perceived risks: a cross-country perspective utilizing the unified theory of acceptance and use of technology. Comput Hum Behav 86:109–128. https://doi.org/10.1016/j.chb.2018.04.017

    Google Scholar 

  29. Cohen J (1992) A power primer. Psychol Bull 112(1):155–159

    Article  Google Scholar 

  30. Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q 13(3):319–340. https://doi.org/10.2307/249008

    Google Scholar 

  31. Delre SA, Jager W, Bijmolt TH, Janssen MA (2010) Will it spread or not? The effects of social influences and network topology on innovation diffusion. J Prod Innov Manag 27(2):267–282. https://doi.org/10.1111/j.1540-5885.2010.00714.x

    Google Scholar 

  32. Dickinson JE, Filimonau V, Cherrett T, Davies N, Hibbert JF, Norgate S, Speed C (2017) Lift-share using mobile apps in tourism: the role of trust, sense of community and existing lift-share practices. Transp Res Part D-Transp Environ 61:397–405. https://doi.org/10.1016/j.trd.2017.11.004

    Google Scholar 

  33. Dijkstra TK, Henseler J (2015) Consistent and asymptotically normal PLS estimators for linear structural equations. Comput Stat Data Anal 81(1):10–23. https://doi.org/10.1016/j.csda.2014.07.008

    Google Scholar 

  34. Doney PM, Cannon JP, Mullen MR (1998) Understanding the influence of national culture on the development of trust. Acad Manag Rev 23(3):601–620. https://doi.org/10.2307/259297

    Google Scholar 

  35. Economou D, Gavalas D, Kenteris M, Tsekouras GE (2008) Cultural applications for mobile devices: issues and requirements for authoring tools and development platforms. Mob Comput Commun Rev 12(3):18–33. https://doi.org/10.1145/1462141.1462145

    Google Scholar 

  36. Eisenhauer M, Oppermann R, Schmidt-Belz B (2003) Mobile information systems for all. In: Stephanidis C (ed) 10th Int Conf Hum-Comput Interact. Crete, Greece, pp 354–358

    Google Scholar 

  37. Escobar-Rodríguez T, Carvajal-Trujillo E (2014) Online purchasing tickets for low cost carriers: an application of the unified theory of acceptance and use of technology (UTAUT) model. Tour Manag 43:70–88. https://doi.org/10.1016/j.tourman.2014.01.017

    Google Scholar 

  38. Falk RF, Miller NB (1992) A primer for soft modeling. University of Akron Press, Akron

    Google Scholar 

  39. Fishbein M, Ajzen I (1975) Belief, attitudes, intention, and behaviour. An introduction to theory and research. Addison-Wesley, Massachusetts

    Google Scholar 

  40. Foon YS, Fah BCY (2011) Internet banking adoption in Kuala Lumpur: an application of UTAUT model. Int J Bus Manag 6(4):161–167. https://doi.org/10.5539/ijbm.v6n4p161

    Google Scholar 

  41. Fornell C, Bookstein FL (1982) Two structural equation models: lISREL and PLS applied to consumer exit-voice theory. J Mark Res 19(4):440–452. https://doi.org/10.2307/3151718

    Google Scholar 

  42. Fornell C, Larcker DF (1981) Structural equation models with unobservable variables and measurement error: algebra and statistics. J Mark Res 18(3):382–388. https://doi.org/10.2307/3150980

    Google Scholar 

  43. Fuchs M, Höpken W, Rasinger J (2011) Behavioral intention to use mobile information services in tourism: the case of the tourist guide Dolomitisuperski. Mob J Inf Technol Tour 13(4):285–307. https://doi.org/10.3727/109830512X13364362859858

    Google Scholar 

  44. Fuentetaja IG, Simon IZ, Aranzabal AR, Ariza MP, Lamsfus C, Alzua-Sorzabal A (2013) An analysis of mobile applications classification related to tourism destinations. In: Xiang Z, Tussyadiah I (eds) Information and communication technologies in tourism 2014. Springer, Cham, pp 31–44. https://doi.org/10.1007/978-3-319-03973-2_3

    Google Scholar 

  45. Gallego MD, Bueno S, Racero FJ, Noyes J (2015) Open source software: the effects of training on acceptance. Comput Hum Behav 49:390–399. https://doi.org/10.1016/j.chb.2015.03.029

    Google Scholar 

  46. Gao T, Deng Y (2012) A study on users’ acceptance behavior to mobile e-books application based on UTAUT model. In: IEEE international conference on computer science and automation engineering, Beijing, pp 376–379. https://doi.org/10.1109/ICSESS.2012.6269483

  47. Gao S, Krogstie J, Siau K (2014) Adoption of mobile information services: an empirical study. Mob Inf Syst 10(2):147–171. https://doi.org/10.3233/MIS-130176

    Google Scholar 

  48. Gefen D, Straub D (2005) A practical guide to factorial validity using PLS-graph: tutorial and annotated example. Commun Assoc Inf Syst 16(1):91–109. https://doi.org/10.17705/1CAIS.01605

    Google Scholar 

  49. Gefen D, Straub W, Boudreau MC (2000) Structural equation modeling and regression: guidelines for research practice. Commun Assoc Inf Syst 4(7):1. https://doi.org/10.17705/1CAIS.00407

    Google Scholar 

  50. Gefen D, Karahanna E, Straub D (2003) Trust and TAM in online shopping: an integrated model. MIS Q 27(1):51–90. https://doi.org/10.2307/30036519

    Google Scholar 

  51. Ghobakhloo M, Arias-Aranda D, Benitez-Amado V (2011) Adoption of e-commerce applications in SMES. Ind Manag Data Syst 111(8):1238–1269. https://doi.org/10.1108/02635571111170785

    Google Scholar 

  52. Götz O, Liehr-Gobbers K, Krafft M (2011) Evaluation of structural equation models using the partial least squares (PLS) Approach. In: Esposito VV, Chin W, Henseler J, Wang H (eds) Handbook of partial least squares: Springer handbooks of computational statistics. Springer, Berlin, pp 691–711. https://doi.org/10.1007/978-3-540-32827-8_30

    Google Scholar 

  53. Green SB (1991) How many subjects does it take to do a regression analysis. Multivariate Behav Res 26(3):499–510. https://doi.org/10.1207/s15327906mbr2603_7

    Google Scholar 

  54. Grün C, Werthner H, Proll B, Retschitzegger W, Schwinger W (2008) Assisting tourists on the move—an evaluation of mobile tourist guides. In: 7th International conference on mobile business 2008, Barcelona, Spain, pp 171–180. https://doi.org/10.1109/ICMB.2008.28

  55. Gupta A, Dogra N (2017) Tourist adoption of mapping apps: a UTAUT2 perspective of smart travellers. Tour Hosp Manag 23(2):145–161. https://doi.org/10.20867/thm.23.2.6

    Google Scholar 

  56. Gupta A, Dogra N, George B (2018) What determines tourist adoption of smartphone apps? An analysis based on the UTAUT-2 framework. J Hosp Tour Technol 9(1):50–64. https://doi.org/10.1108/jhtt-02-2017-0013

    Google Scholar 

  57. Ha S, Stoel L (2009) Consumer e-shopping acceptance: antecedents in a technology acceptance model. J Bus Res 62(5):565–571. https://doi.org/10.1016/j.jbusres.2008.06.016

    Google Scholar 

  58. Hair J, Babin B, Money A, Samouel P (2005) Fundamentos de métodos de pesquisa em administração. Porto Alegre Bookman

  59. Hair JF, Ringle CM, Sarstedt M (2011) PLS-SEM: indeed a silver bullet. J Mark Theor Pract 19(2):139–152. https://doi.org/10.2753/MTP1069-6679190202

    Google Scholar 

  60. Hair JF, Sarstedt M, Hopkins L, Kuelwieser V (2014) Partial least squares structural equation modeling (PLS-SEM) An emerging tool in business research. Eur Bus Rev 26(2):106–121. https://doi.org/10.1108/EBR-10-2013-0128

    Google Scholar 

  61. Henseler J (2017) Bridging design and behavioral research with variance-based structural equation modeling. J Advert 46(1):178–192. https://doi.org/10.1080/00913367.2017.1281780

    Google Scholar 

  62. Henseler J, Dijkstra TK (2015) ADANCO 2.0. Composite Modeling. Kleve, Germany

  63. Henseler J, Ringle CM, Sinkovics RR (2009) The use of partial least squares path modeling in international marketing. Adv Int Mark 20(1):277–319. https://doi.org/10.1108/S1474-7979(20)09000-0020014

    Google Scholar 

  64. Henseler J, Hubona G, Ray PA (2016) Using PLS path modeling in new technology research: updated guidelines. Ind Manag Data Syst 116(1):2–20. https://doi.org/10.1108/IMDS-09-2015-0382

    Google Scholar 

  65. Hew JJ, Lee VH, Ooi KB, Wei J (2015) What catalyses mobile apps usage intention: an empirical analysis. Ind Manag Data Syst 115(7):1269–1291. https://doi.org/10.1108/IMDS-01-2015-0028

    Google Scholar 

  66. Höpken W, Fuchs M, Zanker M, Beer T (2010) Context-based adaptation of mobile apps in tourism. J Inf Technol Tour 12(2):175–195. https://doi.org/10.3727/109830510X12887971002783

    Google Scholar 

  67. Hu LT, Bentler PM (1998) Fit indices in covariance structure modeling: sensitivity to under parameterized model misspecification. Psychol Methods 3(4):424–453. https://doi.org/10.1037/1082-989X.3.4.424

    Google Scholar 

  68. Hulland J (1999) Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strateg Manag J 20(2):195–204

    Article  Google Scholar 

  69. IAB (2014) VI Estudio Anual Mobile Marketing

  70. Islam R, Islam R, Mazumder TA (2010) Mobile application and its global impact. Int J Eng Technol 10(6):104–111

    Google Scholar 

  71. Jang YT, Chang SE, Tsai YJ (2014) Smartphone security: understanding smartphone users’ trust in information security management. Secur Commun Netw 7(9):1313–1321. https://doi.org/10.1002/sec.787

    Google Scholar 

  72. Jarvis C, Mackenzie S, Podsakoff P (2003) Critical review of construct indicators and measurement model misspecification in marketing and consumer research. J Consum Res 30(2):199–218. https://doi.org/10.1086/376806

    Google Scholar 

  73. Joo J, Sang Y (2013) Exploring Koreans’ smartphone usage: an integrated model of the technology acceptance model and uses and gratifications theory. Comput Hum Behav 29(6):2512–2518. https://doi.org/10.1016/j.chb.2013.06.002

    Google Scholar 

  74. Karjaluoto H, Jayawardhena C, Leppäniemi M, Pihlström M (2012) How value and trust influence loyalty in wireless telecommunications industry. Telecommun Policy 36(8):636–649. https://doi.org/10.1016/j.telpol.2012.04.012

    Google Scholar 

  75. Kenteris M, Gavalas D, Economou D (2009) An innovative mobile electronic tourist guide application. Pers Ubiquit Comput 13:103–118. https://doi.org/10.1007/s00779-007-0191-y

    Google Scholar 

  76. Khan IU, Hameed Z, Khan SU (2017) Understanding online banking adoption in a developing country: UTAUT2 with cultural moderators. J Glob Inf Manag 25(1):43–65. https://doi.org/10.4018/JGIM.2017010103

    Google Scholar 

  77. Komiak SX, Benbasat I (2004) Understanding customer trust in agent-mediated electronic commerce, web-mediated electronic commerce, and traditional commerce. Inf Technol Manag 5(1/2):181–207. https://doi.org/10.1023/B:ITEM.0000008081.55563.d4

    Google Scholar 

  78. Kray C, Baus J (2003) A survey of mobile guides. In: Cheverst K (ed) Schmidt-Bels B. HCI in mobile Guides, Italy

    Google Scholar 

  79. Lai IKW, Guicheng S (2015) The impact of privacy concerns on the intention for continued use of an integrated mobile instant messaging and social network platform. Int J Mob Commun 13(6):641–669. https://doi.org/10.1504/IJMC.2015.072086

    Google Scholar 

  80. Leong LY, Ooi KB, Chong AYL, Lin B (2013) Modeling the stimulators of the behavioural intention to use mobile entertainment: does gender really matter? Comput Hum Behav 29(5):2109–2121. https://doi.org/10.1016/j.chb.2013.04.004

    Google Scholar 

  81. Lu J, Yao JE, Yu CS (2005) Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. J Strateg Inf Syst 14(3):245–268. https://doi.org/10.1016/j.jsis.2005.07.003

    Google Scholar 

  82. Luo X, Li H, Zhang J, Shim JP (2010) Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: an empirical study of mobile banking services. Decis Support Syst 49(2):222–234. https://doi.org/10.1016/j.dss.2010.02.008

    Google Scholar 

  83. Ma Q, Chan AH, Chen K (2016) Personal and other factors affecting acceptance of smartphone technology by older Chinese adults. Appl Ergon 54:62–71. https://doi.org/10.1016/j.apergo.2015.11.015

    Google Scholar 

  84. Madigan R, Louw T, Wilbrink M, Schieben A, Merat N (2017) What influences the decision to use automated public transport? Using UTAUT to understand public acceptance of automated road transport systems. Transp Res Pt F-Traffic Psychol Behav 50:55–64. https://doi.org/10.1016/j.trf.2017.07.007

    Google Scholar 

  85. Magrath V, McCormick H (2013) Marketing design elements of mobile fashion retail apps. J Fash Mark Manag 17(1):115–134. https://doi.org/10.1108/13612021311305173

    Google Scholar 

  86. Matos N, Mendes J, Valle P (2011) The impacts of tourism experiences in the destination image. The case of the Algarve. In: International conference on tourism and management studies 2011, Algarve, Portugal, 2:1057–1059

  87. Matos N, Mendes J, Valle P (2012) Revisiting the destination image construct through a conceptual model. Dos Algarves 21:101–117

    Google Scholar 

  88. Min Q, Ji S, Qu G (2008) Mobile commerce user acceptance study in China: a revised UTAUT model. Tsinghua Sci Technol 13(3):257–264. https://doi.org/10.1016/S1007-0214(08)70042-7

    Google Scholar 

  89. Mutlu M, Der A (2017) Unified theory of acceptance and use of technology: the adoption of mobile messaging application. Megatrend Revija 14(1):169–186. https://doi.org/10.5937/megrev1701169m

    Google Scholar 

  90. Nikou S, Bouwman H (2014) Ubiquitous use of mobile social network services. Telemat Inf 31(3):422–433. https://doi.org/10.1016/j.tele.2013.11.002

    Google Scholar 

  91. Nitzl C, Roldan JL, Cepeda G (2016) Mediation analysis in partial least squares path modeling. Ind Manag Data Syst 116(9):1849–1864. https://doi.org/10.1108/IMDS-07-2015-0302

    Google Scholar 

  92. Nofer M, Hinz O, Muntermann J, Rossnagel H (2014) The economic impact of privacy violations and security breaches. Bus Inf Syst Eng 6(6):339–348

    Article  Google Scholar 

  93. Palau-Saumell R, Forgas-Coll S, Sánchez-García J, Robres E (2019) User acceptance of mobile apps for restaurants: an expanded and extended UTAUT-2. Sustainability 11(4):1210. https://doi.org/10.3390/su11041210

    Google Scholar 

  94. Palos-Sanchez PR (2017) El cambio de las relaciones con el cliente a través de la adopción de APPS: estudio de las variables de influencia en M-Commerce. Rev ESPACIOS 38(23):1

    Google Scholar 

  95. Palos-Sanchez PR, Arenas-Marquez FJ, Aguayo-Camacho M (2017a) Cloud computing (SaaS) adoption as a strategic technology: results of an empirical study. Mob Inf Syst. https://doi.org/10.1155/2017/2536040

    Google Scholar 

  96. Palos-Sanchez PR, Hernandez-Mogollon JM, Campon-Cerro AM (2017b) The behavioral response to location based services: an examination of the influence of social and environmental benefits, and privacy. Sustainability 9(11):1988. https://doi.org/10.3390/su9111988

    Google Scholar 

  97. Peng W, Yuan S, Ma W (2018) Moderating effects of app type on the intention of continued use of mobile apps among college students. Int J Mob Commun 16(6):715–734. https://doi.org/10.1504/IJMC.2018.095131

    Google Scholar 

  98. Peters M, Piazolo F, Koster L, Promberger K (2008) The deployment of intelligent local-based information systems (ilbi): a case study of the European Football Championship 2008. J Conv Event Tour 11(1):18–41. https://doi.org/10.1080/15470141003587574

    Google Scholar 

  99. Podsakoff PM, MacKenzie SB, Lee JY, Podsakoff NP (2003) Common method biases in behavioral research: a critical review of the literature and recommended remedies. J Appl Psychol 88(5):879–903. https://doi.org/10.1037/0021-9010.88.5.879

    Google Scholar 

  100. Pynoo B, Devolder P, Tondeur J, Van Braak J, Duyck W, Duyck P (2011) Predicting secondary school teachers’ acceptance and use of a digital learning environment: a cross-sectional study. Comput Hum Behav 27(1):568–575. https://doi.org/10.1016/j.chb.2010.10.005

    Google Scholar 

  101. Ramos CM, Matos N, Sousa CM, Correia MB, Cascada P (2017) Marketing intelligence and automation–An approach associated with tourism in order to obtain economic benefits for a region. In: Int conf univers access hum-comput interact. Springer, Cham, pp 402–411. https://doi.org/10.1007/978-3-319-58706-6_32

  102. Rasinger J, Fuchs M, Höpken W (2007) Information search with mobile tourist guides—a survey of usage intention. J Inf Technol Tour 9(3/4):177–194. https://doi.org/10.3727/109830507782166962

    Google Scholar 

  103. Rasinger J, Fuchs M, Beer T, Höpken W (2009) Building a mobile tourist guide based on tourists’ on-site information needs. Tour Anal 14(4):483–502. https://doi.org/10.3727/108354209X12596287114255

    Google Scholar 

  104. Ravangard R, Kazemi Z, Zaker S, Sharifian R, Monem H (2017) Development of the UTAUT2 model to measure the acceptance of medical laboratory portals by patients in Shiraz. Electron Physician 9(2):3862–3869. https://doi.org/10.19082/3862

    Google Scholar 

  105. Reyes-Menendez A, Palos-Sanchez PR, Saura JR, Martin-Velicia F (2018) Understanding the influence of wireless communications and Wi-Fi access on customer loyalty: a behavioral model system. Wirel Commun Mob Comput. https://doi.org/10.1155/2018/3487398

    Google Scholar 

  106. Reyes-Menendez A, Saura JR, Martinez-Navalon JG (2019) The impact of e-WOM on hotels management reputation: exploring TripAdvisor review credibility with the ELM model. IEEE Access 7:68868–68877. https://doi.org/10.1109/ACCESS.2019.2919030

    Google Scholar 

  107. Riffai MMMA, Grant K, Edgar D (2012) Big TAM in Oman: exploring the promise of on-line banking, its adoption by customers and the challenges of banking in Oman. Int J Inf Manag 32(3):239–250. https://doi.org/10.1016/j.ijinfomgt.2011.11.007

    Google Scholar 

  108. San Martín H, Herrero A (2012) Influence of the user’s psychological factors on the online purchase intention in rural tourism: integrating innovativeness to the UTAUT framework. Tour Manag 33(2):341–350. https://doi.org/10.1016/j.tourman.2011.04.003

    Google Scholar 

  109. Saura JR, Bennett D (2019) A three-stage methodological process of data text mining: a UGC business intelligence analysis. Symmetry 11(4):519. https://doi.org/10.3390/sym11040519

    Google Scholar 

  110. Saura JR, Rodriguez-Herráez B, Reyes-Menendez A (2019) Comparing a traditional approach for financial brand communication analysis with a big data analytics technique. IEEE Access 7:37100–37108. https://doi.org/10.1109/ACCESS.2019.2905301

    Google Scholar 

  111. Schillewaert N, Ahearne MJ, Frambach RT, Moenaert RK (2005) The adoption of information technology in the sales force. Ind Mark Manag 34(4):323–336. https://doi.org/10.1016/j.indmarman.2004.09.013

    Google Scholar 

  112. Schuberth F, Henseler J, Dijkstra TK (2018) Confirmatory composite analysis. Front Psychol 9:2541. https://doi.org/10.3389/fpsyg.2018.02541

    Google Scholar 

  113. Shaikh AA, Karjaluoto H (2015) Mobile banking adoption: a literature review. Telemat Inf 32(1):129–142. https://doi.org/10.1016/j.tele.2014.05.003

    Google Scholar 

  114. Shen YC, Huang CY, Chu CH, Hsu CT (2010) A benefit–cost perspective of the consumer adoption of the mobile banking system. Behav Inf Technol 29(5):497–511. https://doi.org/10.1080/01449290903490658

    Google Scholar 

  115. Shorfuzzaman M, Alhussein M (2016) Modeling learners’ readiness to adopt mobile learning: a perspective from a GCC higher education institution. Mob Inf Syst. https://doi.org/10.1155/2016/6982824

    Google Scholar 

  116. Slade E, Williams M, Dwivedi Y, Piercy N (2015) Exploring consumer adoption of proximity mobile payments. J Strateg Mark 23(3):209–223. https://doi.org/10.1080/0965254X.2014.914075

    Google Scholar 

  117. Son JY, Benbasat I (2007) Organizational buyers’ adoption and use of B2B electronic marketplaces: efficiency-and legitimacy- oriented perspectives. J Manag Inf Syst 24(1):55–99. https://doi.org/10.2753/MIS0742-1222240102

    Google Scholar 

  118. Sun Y, Wang N, Guo X, Peng Z (2013) Understanding the acceptance of mobile health services: a comparison and integration of alternative models. J Electron Commer Res 14(2):183–200

    Google Scholar 

  119. Tai YM, Ku YC (2013) Will stock investors use mobile stock trading? A benefit-risk assessment based on a modified UTAUT model. J Electron Commer Res 14(1):67–84

    Google Scholar 

  120. Tak P, Panwar S (2017) Using UTAUT 2 model to predict mobile app based shopping: evidences from India. J Indian Bus Res 9(3):248–264. https://doi.org/10.1108/JIBR-11-2016-0132

    Google Scholar 

  121. Tan KS, Chong SC, Loh PL, Lin B (2010) An evaluation of e-banking and m-banking adoption factors and preference in Malaysia: a case study. Int J Mob Commun 8(5):507–527. https://doi.org/10.1504/IJMC.2010.034935

    Google Scholar 

  122. Tan GWH, Lee VH, Lin B, Ooi KB (2017) Mobile applications in tourism: the future of the tourism industry? Ind Manag Data Syst 117(3):560–581. https://doi.org/10.1108/IMDS-12-2015-0490

    Google Scholar 

  123. TicBeat (2011) El desarrollo de las aplicaciones móviles. La Catedral Innova. https://www.ticbeat.com/innovacion/desarrollo-aplicaciones-moviles/. Accessed 4 May 2016

  124. Ukpabi DC, Karjaluoto H (2017) Consumers’ acceptance of information and communications technology in tourism: a review. Telemat Inf 34(5):618–644. https://doi.org/10.1016/j.tele.2016.12.002

    Google Scholar 

  125. Uzoka FME (2008) Organisational influences on e-commerce adoption in a developing country context using UTAUT. Int J Bus Inf Syst 3(3):300–316

    Google Scholar 

  126. Van Der Heijden H (2004) User acceptance of hedonic information systems. MIS Q 28(4):695–704. https://doi.org/10.2307/25148660

    Google Scholar 

  127. Venkatesh V, Bala H (2008) Technology acceptance model 3 and a research agenda on interventions. Decis Sci 39(2):273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

    Google Scholar 

  128. Venkatesh V, Davis FD (2000) A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag Sci 46(2):186–204. https://doi.org/10.1287/mnsc.46.2.186.11926

    Google Scholar 

  129. Venkatesh V, Morris MG (2000) Why men don’t ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage. MIS Q 24(1):115–139. https://doi.org/10.2307/3250981

    Google Scholar 

  130. Venkatesh V, Morris MG, Davis GB, Davis FD (2003) User acceptance of information technology: toward a unified view. MIS Q 27(3):425–478. https://doi.org/10.2307/30036540

    Google Scholar 

  131. Venkatesh V, Thong JY, Xu X (2012) Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q 36(1):157–178. https://doi.org/10.2307/41410412

    Google Scholar 

  132. Wang C, Chow S, Wang Q, Ren K, Lou W (2013) Privacy-preserving public auditing for secure cloud storage. IEEE Trans Comput 62(2):362–375. https://doi.org/10.1109/TC.2011.245

    Google Scholar 

  133. Wenli L, Caixia Y (2016) Study of factors affecting tourists’ adoption behavior of mobile e-commerce. J Resid Sci Technol 13(7):193. https://doi.org/10.12783/issn.1544-8053/13/7/193

    Google Scholar 

  134. Wiener M, Maresch D, Breitenecker RJ (2019) The shift towards entrepreneurial universities and the relevance of third-party funding of business and economics units in Austria: a research note. Rev Manag Sci 14:345–363. https://doi.org/10.1007/s11846-019-00359-y

    Google Scholar 

  135. Williams MD, Rana NP, Dwivedi YK, Lal B (2011) Is UTAUT really used or just cited for the sake of it? A systematic review of citations of UTAUT’s originating article. In: Eur Conf Inf Syst 2011

  136. Wixom BH, Todd PA (2005) A theoretical integration of user satisfaction and technology acceptance. Inf Syst Res 16(1):85–102

    Article  Google Scholar 

  137. Wu JH, Wang SC (2005) What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Inf Manag 42(5):719–729. https://doi.org/10.1016/j.im.2004.07.001

    Google Scholar 

  138. Yang K, Forney JC (2013) The moderating role of consumer technology anxiety in mobile shopping adoption: differential effects of facilitating conditions and social influences. J Electron Commer Res 14(4):334–347

    Google Scholar 

  139. Yu C (2012) Factors affecting individuals to adopt mobile banking: empirical evidence from the UTAUT model. J Electron Commer Res 13(2):104–121

    Google Scholar 

  140. Yuan S, Ma W, Kanthawala S, Peng W (2015) Keep using my health apps: discover users’ perception of health and fitness apps with the UTAUT2 model. Telemed J E Health 21(9):735–741. https://doi.org/10.1089/tmj.2014.0148

    Google Scholar 

  141. Yun H, Han D, Lee CC (2013) Understanding the use of location-based service applications: do privacy concerns matter? J Electron Commer Res 14(3):215–230

    Google Scholar 

  142. Zhou T (2011) Understanding mobile Internet continuance usage from the perspectives of UTAUT and flow. Inf Dev 27(3):207–218. https://doi.org/10.1177/0266666911414596

    Google Scholar 

  143. Zhou T (2012) Examining location-based services usage from the perspectives of unified theory of acceptance and use of technology and privacy risk. J Electron Commer Res 13(2):135–144

    Google Scholar 

  144. Zhou T (2013) An empirical examination of continuance intention of mobile payment services. Decis Support Syst 54(2):1085–1091. https://doi.org/10.1016/j.dss.2012.10.034

    Google Scholar 

  145. Zhou T, Lu Y, Wang B (2010) Integrating TTF and UTAUT to explain mobile banking user adoption. Comput Hum Behav 26(4):760–767. https://doi.org/10.1016/j.chb.2010.01.013

    Google Scholar 

Download references

Acknowledgements

This paper is financed by National Funds provided by FCT - Foundation for Science and Technology through project ref. UIDB/04470/2020 CiTUR.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jose Ramon Saura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Tables 10, 11.

Table 10 Original measurement items
Table 11 Original measurement items

Appendix 2

See Table 12.

Table 12 Cross-loading

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palos-Sanchez, P., Saura, J.R. & Correia, M.B. Do tourism applications’ quality and user experience influence its acceptance by tourists?. Rev Manag Sci (2020). https://doi.org/10.1007/s11846-020-00396-y

Download citation

Keywords

  • Mobile application
  • App user experience
  • App quality
  • Mobile tourism applications
  • UTAUT2

Mathematics Subject Classification

  • M31 Marketing