Skip to main content
Log in

Longitudinal variation of serum PCSK9 in ulcerative colitis: association with disease activity, T helper 1/2/17 cells, and clinical response of tumor necrosis factor inhibitor

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Aims

Proprotein convertase subtilisin/kexin type 9 (PCSK9) modulates CD4+ T cell differentiation and inflammatory response, the latter ones mediate ulcerative colitis (UC) initiation. This study intended to explore the correlation of serum PCSK9 with disease activity, T helper (h)1/Th2/Th17 cells, and clinical response of tumor necrosis factor inhibitor (TNFi) in UC patients.

Methods

In 65 UC patients underwent TNFi treatment, serum PCSK9 was evaluated at baseline (W0), week (W)2, W6, and W12 by enzyme-linked immunosorbent assays; meanwhile, Th1/Th2/Th17 cells were determined at W0 by flow cytometry. Besides, serum PCSK9 was detected in 65 healthy controls (HCs).

Results

Serum PCSK9 was increased in UC patients compared to HCs (P<0.001), which also positively correlated with C-reactive protein (P=0.009), total Mayo score (P=0.018), Mayo-defined disease activity (P=0.020), Th1 (P=0.033), and Th17 (P=0.003) cells, but not Th2 cells (P=0.086) in UC patients. Interestingly, serum PCSK9 was steadily declined from W0 to W12 (P<0.001). W2-W0, W6-W0, and W12-W0 serum PCSK9 change (PCSK9 at W2, W6, or W12 minus PCSK9 at W0, respectively) was gradually becoming greater during TNFi treatment (P<0.001). Furthermore, forty-five (69.2%) patients achieved clinical response at W12, whose serum PCSK9 at W6 (P=0.041) and W12 (P=0.001) was lower, and W6-W0 (P=0.043), W12-W0 (P=0.019) serum PCSK9 change was more obvious compared to patients without clinical response at W12.

Conclusions

Serum PCSK9 is positively related to disease activity, Th1, and Th17 cells in UC patients; further, its decline correlates with TNFi response achievement in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data utilized in this study are included in the article.

References

  1. Kobayashi T, Siegmund B, Le Berre C et al (2020) Ulcerative colitis. Nat Rev Dis Primers 6:74. https://doi.org/10.1038/s41572-020-0205-x

    Article  PubMed  Google Scholar 

  2. Conrad K, Roggenbuck D, Laass MW (2014) Diagnosis and classification of ulcerative colitis. Autoimmun Rev 13:463–466. https://doi.org/10.1016/j.autrev.2014.01.028

    Article  CAS  PubMed  Google Scholar 

  3. Segal JP, LeBlanc JF, Hart AL (2021) Ulcerative colitis: an update. Clin Med (Lond) 21:135–139. https://doi.org/10.7861/clinmed.2021-0080

    Article  PubMed  Google Scholar 

  4. Du L, Ha C (2020) Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterol Clin North Am 49:643–654. https://doi.org/10.1016/j.gtc.2020.07.005

    Article  PubMed  Google Scholar 

  5. Macaluso FS, Orlando A, Papi C et al (2022) Use of biologics and small molecule drugs for the management of moderate to severe ulcerative colitis: IG-IBD clinical guidelines based on the GRADE methodology. Dig Liver Dis 54:440–451. https://doi.org/10.1016/j.dld.2022.01.127

    Article  CAS  PubMed  Google Scholar 

  6. Feuerstein JD, Isaacs KL, Schneider Y et al (2020) AGA Clinical Practice Guidelines on the Management of Moderate to Severe Ulcerative Colitis. Gastroenterology 158:1450–1461. https://doi.org/10.1053/j.gastro.2020.01.006

    Article  PubMed  Google Scholar 

  7. Bhattacharya A, Osterman MT (2020) Biologic Therapy for Ulcerative Colitis. Gastroenterol Clin North Am 49:717–729. https://doi.org/10.1016/j.gtc.2020.08.002

    Article  PubMed  Google Scholar 

  8. Rubin DT, Ananthakrishnan AN, Siegel CA et al (2019) ACG Clinical Guideline: Ulcerative Colitis in Adults. Am J Gastroenterol 114:384–413. https://doi.org/10.14309/ajg.0000000000000152

  9. Xiao Q, Li X, Li Y et al (2021) Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B 11:941–960. https://doi.org/10.1016/j.apsb.2020.12.018

    Article  CAS  PubMed  Google Scholar 

  10. Roda G, Jharap B, Neeraj N et al (2016) Loss of Response to Anti-TNFs: Definition, Epidemiology, and Management. Clin Transl Gastroenterol 7:e135. https://doi.org/10.1038/ctg.2015.63

  11. Singh S, George J, Boland BS et al (2018) Primary Non-Response to Tumor Necrosis Factor Antagonists is Associated with Inferior Response to Second-line Biologics in Patients with Inflammatory Bowel Diseases: A Systematic Review and Meta-analysis. J Crohns Colitis 12:635–643. https://doi.org/10.1093/ecco-jcc/jjy004

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen X, Hou J, Yuan Y et al (2016) Adalimumab for Moderately to Severely Active Ulcerative Colitis: A Systematic Review and Meta-Analysis. BioDrugs 30:207–217. https://doi.org/10.1007/s40259-016-0173-6

    Article  CAS  PubMed  Google Scholar 

  13. Pugliese D, Felice C, Papa A et al (2017) Anti TNF-alpha therapy for ulcerative colitis: current status and prospects for the future. Expert Rev Clin Immunol 13:223–233. https://doi.org/10.1080/1744666X.2017.1243468

    Article  CAS  PubMed  Google Scholar 

  14. Schulz R, Schluter KD, Laufs U (2015) Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res Cardiol 110:4. https://doi.org/10.1007/s00395-015-0463-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mousavi SA, Berge KE, Leren TP (2009) The unique role of proprotein convertase subtilisin/kexin 9 in cholesterol homeostasis. J Intern Med 266:507–519. https://doi.org/10.1111/j.1365-2796.2009.02167.x

    Article  CAS  PubMed  Google Scholar 

  16. Wu NQ, Shi HW, Li JJ (2022) Proprotein Convertase Subtilisin/Kexin Type 9 and Inflammation: An Updated Review. Front Cardiovasc Med 9:763516. https://doi.org/10.3389/fcvm.2022.763516

  17. Tang ZH, Peng J, Ren Z et al (2017) New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-kappaB pathway. Atherosclerosis 262:113–122. https://doi.org/10.1016/j.atherosclerosis.2017.04.023

    Article  CAS  PubMed  Google Scholar 

  18. Kim YU, Kee P, Danila D et al (2019) A Critical Role of PCSK9 in Mediating IL-17-Producing T Cell Responses in Hyperlipidemia. Immune Netw 19:e41. https://doi.org/10.4110/in.2019.19.e41

  19. Yao D, Dong M, Dai C et al (2019) Inflammation and Inflammatory Cytokine Contribute to the Initiation and Development of Ulcerative Colitis and Its Associated Cancer. Inflamm Bowel Dis 25:1595–1602. https://doi.org/10.1093/ibd/izz149

    Article  PubMed  Google Scholar 

  20. Fang C, Luo T, Lin L (2018) Elevation of serum proprotein convertase subtilisin/kexin type 9 (PCSK9) concentrations and its possible atherogenic role in patients with systemic lupus erythematosus. Ann Transl Med 6:452. https://doi.org/10.21037/atm.2018.11.04

  21. Cai J, Jiang Y, Chen F et al (2022) Serum PCSK9 is positively correlated with disease activity and Th17 cells, while its short-term decline during treatment reflects desirable outcomes in ankylosing spondylitis patients. Ir J Med Sci. https://doi.org/10.1007/s11845-022-03204-6

    Article  PubMed  Google Scholar 

  22. Frostegard J, Ahmed S, Hafstrom I et al (2021) Low levels of PCSK9 are associated with remission in patients with rheumatoid arthritis treated with anti-TNF-alpha: potential underlying mechanisms. Arthritis Res Ther 23:32. https://doi.org/10.1186/s13075-020-02386-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marinelli C, Zingone F, Lupo MG et al (2022) Serum Levels of PCSK9 Are Increased in Patients With Active Ulcerative Colitis Representing a Potential Biomarker of Disease Activity: A Cross-sectional Study. J Clin Gastroenterol 56:787–793. https://doi.org/10.1097/MCG.0000000000001607

    Article  CAS  PubMed  Google Scholar 

  24. Schroeder KW, Tremaine WJ, Ilstrup DM (1987) Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N Engl J Med 317:1625–1629. https://doi.org/10.1056/NEJM198712243172603

  25. Rutgeerts P, Sandborn WJ, Feagan BG et al (2005) Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med 353:2462–2476. https://doi.org/10.1056/NEJMoa050516

    Article  CAS  PubMed  Google Scholar 

  26. Bae JM, Choo JY, Kim KJ et al (2017) Association of inflammatory bowel disease with ankylosing spondylitis and rheumatoid arthritis: A nationwide population-based study. Mod Rheumatol 27:435–440. https://doi.org/10.1080/14397595.2016.1211229

    Article  CAS  PubMed  Google Scholar 

  27. Xu Q, Ni JJ, Han BX et al (2021) Causal Relationship Between Gut Microbiota and Autoimmune Diseases: A Two-Sample Mendelian Randomization Study. Front Immunol 12:746998. https://doi.org/10.3389/fimmu.2021.746998

  28. Zhou R, Chang Y, Liu J et al (2017) JNK Pathway-Associated Phosphatase/DUSP22 Suppresses CD4(+) T-Cell Activation and Th1/Th17-Cell Differentiation and Negatively Correlates with Clinical Activity in Inflammatory Bowel Disease. Front Immunol 8:781. https://doi.org/10.3389/fimmu.2017.00781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caporali R, Bugatti S, Cavagna L et al (2014) Modulating the co-stimulatory signal for T cell activation in rheumatoid arthritis: could it be the first step of the treatment? Autoimmun Rev 13:49–53. https://doi.org/10.1016/j.autrev.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  30. Mauro D, Thomas R, Guggino G et al (2021) Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat Rev Rheumatol 17:387–404. https://doi.org/10.1038/s41584-021-00625-y

    Article  CAS  PubMed  Google Scholar 

  31. Sharabi A, Tsokos GC (2020) T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol 16:100–112. https://doi.org/10.1038/s41584-019-0356-x

    Article  CAS  PubMed  Google Scholar 

  32. Meng Y, Zheng X, Zhang Z et al (2023) Circulating PCSK9 relates to aggravated disease activity, Th17/Treg imbalance, and predicts treatment outcome of conventional synthetic DMARDs in rheumatoid arthritis patients. Ir J Med Sci. https://doi.org/10.1007/s11845-023-03323-8

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lei L, Li X, Yuan YJ et al (2020) Inhibition of proprotein convertase subtilisin/kexin type 9 attenuates 2,4,6-trinitrobenzenesulfonic acid-induced colitis via repressing toll-like receptor 4/nuclear factor-kappa B. Kaohsiung J Med Sci 36:705–711. https://doi.org/10.1002/kjm2.12225

    Article  CAS  PubMed  Google Scholar 

  34. Frank DN, St Amand AL, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785. https://doi.org/10.1073/pnas.0706625104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi N, Li N, Duan X et al (2017) Interaction between the gut microbiome and mucosal immune system. Mil Med Res 4:14. https://doi.org/10.1186/s40779-017-0122-9

    Article  PubMed  PubMed Central  Google Scholar 

  36. Morelli MB, Wang X, Santulli G (2019) Functional role of gut microbiota and PCSK9 in the pathogenesis of diabetes mellitus and cardiovascular disease. Atherosclerosis 289:176–178. https://doi.org/10.1016/j.atherosclerosis.2019.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miao J, Manthena PV, Haas ME et al (2015) Role of Insulin in the Regulation of Proprotein Convertase Subtilisin/Kexin Type 9. Arterioscler Thromb Vasc Biol 35:1589–1596. https://doi.org/10.1161/ATVBAHA.115.305688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krausgruber T, Blazek K, Smallie T et al (2011) IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 12:231–238. https://doi.org/10.1038/ni.1990

    Article  CAS  PubMed  Google Scholar 

  39. Katsuki S, P KJ, Lupieri A et al (2022) Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Promotes Macrophage Activation via LDL Receptor-Independent Mechanisms. Circ Res 131:873–889. https://doi.org/10.1161/CIRCRESAHA.121.320056

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Fu.

Ethics declarations

Ethics Approval

This study gained approval from the Ethics Committee of Harbin Traditional Chinese Medicine Hospital.

Informed Consent

All the participants provided written informed consents.

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Supplementary file2 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Jiang, Y., Luan, L. et al. Longitudinal variation of serum PCSK9 in ulcerative colitis: association with disease activity, T helper 1/2/17 cells, and clinical response of tumor necrosis factor inhibitor. Ir J Med Sci 193, 165–172 (2024). https://doi.org/10.1007/s11845-023-03440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-023-03440-4

Keywords

Navigation