Skip to main content
Log in

Molecular and in silico analyses of SYN III gene variants in autism spectrum disorder

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

Defects in neurotransmission and synaptogenesis are noteworthy in the pathogenesis of ASD. Synapsin III (SYN III) is defined as a synaptic vesicle protein that plays an important role in synaptogenesis and regulation of neurotransmitter release and neurite outgrowth. Therefore, SYN III may associate with many neurodevelopmental diseases, including ASD.

Aim

The aim of this study was to investigate whether the SYN III gene -631 C > G (rs133946) and -196 G > A (rs133945) polymorphisms are associated with susceptibility to ASD.

Methods

SYN III variants and the risk of ASD were investigated in 26 healthy children and 24 ASD children. SYN III gene variants were genotyped by PCR–RFLP methods. The differences in genotype and allele frequencies between the ASD and control groups were calculated using the chi-square (χ2). We analysed the SYN III gene using web-based tools.

Results

Our results suggest that the presence of the AA genotype of the SYN III -196 G > A (rs133945) polymorphism affects the characteristics and development of ASD in children (p = 0.012). SYN III -631 C > G (rs133946) polymorphism was not associated with ASD (p = 0.524). We have shown the prediction of gene–gene interaction that SYN III is co-expressed with 17 genes, physical interaction with 3 genes, and co-localization with 12 genes. The importance of different genes (SYN I, II, III, GABRD, NOS1AP, GNAO1) for ASD pathogenesis was revealed by GO analysis.

Conclusion

Considering the role of SYN III and related genes, especially in the synaptic vesicle pathway and neurotransmission, its effect on ASD can be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen JA, Peñagarikano O, Belgard TG et al (2015) The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol 10:111–144

    Article  CAS  PubMed  Google Scholar 

  2. Geschwind DH (2011) Genetics of autism spectrum disorders. Trends Cogn Sci 15(9):409–416

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lord C, Elsabbagh M, Baird G et al (2018) Autism spectrum disorder. Lancet 392(10146):508–520

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ivanov HY, Stoyanova VK, Popov NT et al (2015) Autism spectrum disorder - a complex genetic disorder. Folia Med (Plovdiv) 57(1):19–28

    Article  PubMed  Google Scholar 

  5. Şahın N, Kara M, Kara B, Topal H (2018) Evaluation of RELN gene polymorphism in children with autism spectrum disorder. Anadolu Psikiyatri Dergisi 19:599–606

    Google Scholar 

  6. Ecker C (2017) The neuroanatomy of autism spectrum disorder: an overview of structural neuroimaging findings and their translatability to the clinical setting. Autism 21(1):18–28

    Article  PubMed  Google Scholar 

  7. Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16(9):551–563. https://doi.org/10.1038/nrn3992

    Article  CAS  PubMed  Google Scholar 

  8. Özdemir Ç, Şahin N, Edgünlü T (2022) Vesicle trafficking with snares: a perspective for autism. Mol Biol Rep 49(12):12193–12202

    Article  PubMed  Google Scholar 

  9. Salpietro V, Malintan NT, Llano-Rivas I et al (2019) Mutations in the neuronal vesicular SNARE VAMP2 affect synaptic membrane fusion and impair human neurodevelopment. Am J Hum Genet 104(4):721–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakamura K, Iwata Y, Anitha A et al (2011) Replication study of Japanese cohorts supports the role of STX1A in autism susceptibility. Prog Neuropsychopharmacol Biol Psychiatry 35(2):454–458

    Article  CAS  PubMed  Google Scholar 

  11. Safari MR, Omrani MD, Noroozi R et al (2017) Synaptosome-associated protein 25 (SNAP25) gene association analysis revealed risk variants for ASD. Iranian population J Mol Neurosci 61(3):305–311

  12. Fujiwara T, Snada M, Kofuji T et al (2010) HPC-1/syntaxin 1A gene knockout mice show abnormal behavior possibly related to a disruption in 5-HTergic systems. Eur J Neurosci 32(1):99–107

    Article  PubMed  Google Scholar 

  13. Greco B, Managò F, Tucci V et al (2013) Autism-related behavioral abnormalities in synapsin knockout mice. Behav Brain Res 251:65–74. https://doi.org/10.1016/j.bbr.2012.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Yu S, Fu Y et al (2014) Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci 8:276

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tang BL (2020) SNAREs and developmental disorders. J Cell Physiol 236(4):2482–2504. https://doi.org/10.1002/jcp.30067

    Article  CAS  PubMed  Google Scholar 

  16. Feng J, Chi P, Blanpied TA et al (2002) Regulation of neurotransmitter release by synapsin III. J Neurosci 22(11):4372–4380. https://doi.org/10.1523/JNEUROSCI.22-11-04372.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Michetti C, Caruso A, Pagani M et al (2017) The knockout of synapsin II in mice impairs social behavior and functional connectivity generating an ASD-like phenotype. Cereb Cortex 27(10):5014–5023. https://doi.org/10.1093/cercor/bhx207

    Article  PubMed  Google Scholar 

  18. Lee E, Lee J, Kim E (2017) Excitation/inhibition imbalance in animal models of autism spectrum disorders. Biol Psychiat 81(10):838–847

    Article  PubMed  Google Scholar 

  19. Alymov AA, Kapitsa IG, Voronina TA (2021) Neurochemical mechanisms of pathogenesis and pharmacological correction of autism spectrum disorders: current concepts and prospects. Neurochem J 15(2):129–138. https://doi.org/10.1134/S1819712421020033

    Article  CAS  Google Scholar 

  20. Porton B, Wetsel WC, Kao HT (2011) Synapsin III: role in neuronal plasticity and disease. Semin Cell Dev Biol 22(4):416–424. https://doi.org/10.1016/j.semcdb.2011.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kenar ANI, Edgünlü T, Herken H et al (2013) Association of synapsin III gene with adult attention deficit hyperactivity disorder. DNA Cell Biol 32(8):430–434

    Article  CAS  PubMed  Google Scholar 

  22. Warde-Farley D, Donaldson SL, Comes O et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(Web Server issue):W214–W220

  23. Gilani N, Belaghi RA, Aftabi Y et al (2021) Identifying potential miRNA biomarkers for gastric cancer diagnosis using machine learning variable selection approach. Front Genet 12

  24. Kile BM, Guillot TS, Venton BJ et al (2010) Synapsins differentially control dopamine and serotonin release. J Neurosci 30(29):9762–9770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferreira A, Kao HT, Feng J et al (2000) Synapsin III: developmental expression, subcellular localization, and role in axon formation. J Neurosci 20(10):3736–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kao HT, Li P, Chao HM et al (2008) Early involvement of synapsin III in neural progenitor cell development in the adult hippocampus. J Comp Neurol 507(6):1860–1870

    Article  CAS  PubMed  Google Scholar 

  27. Ekinci A, Ekinci O, Turkcarpar H et al (2012) Emotional schemas and their relationship with clinical characteristics in patients with alcohol dependence/Alkol bagimlisi olgularin saglikli kontrollerle emosyonel semalar yonunden karsilastirilmasi ve klinik ozelliklerle iliskisi. Noro Psikiyatr Ars 49(4):286–294

    Google Scholar 

  28. Başay Ö, Kabukcu Basay B, Alacam H et al (2016) The impact of synapsin III gene on the neurometabolite level alterations after single-dose methylphenidate in attention-deficit hyperactivity disorder patients. Neuropsychiatr Dis Treat 12:1141–1149

    PubMed  PubMed Central  Google Scholar 

  29. Porton B, Ferreira A, DeLisi LE et al (2004) A rare polymorphism affects a mitogen-activated protein kinase site in synapsin III: possible relationship to schizophrenia. Biol Psychiatry 55(2):118–125

    Article  CAS  PubMed  Google Scholar 

  30. Hall H, Lawyer G, Sillen A et al (2007) Potential genetic variants in schizophrenia: a Bayesian analysis. World J Biol Psychiatry 8(1):12–22

    Article  PubMed  Google Scholar 

  31. Akkad DA, Gödde R, Epplen JT (2006) No association between synapsin III gene promoter polymorphisms and multiple sclerosis in German patients. J Neurol 253(10):1365–1366

    Article  CAS  PubMed  Google Scholar 

  32. Otaegui D, Zuriarrain O, Castillo-Trivino T et al (2009) Association between synapsin III gene promoter SNPs and multiple sclerosis in Basque patients. Mult Scler 15(1):124–128

    Article  CAS  PubMed  Google Scholar 

  33. Bolat H, Ünsel-Bolat G, Özgül S et al (2022) Investigation of possible associations of the BDNF, SNAP-25 and SYN III genes with the neurocognitive measures: BDNF and SNAP-25 genes might be involved in attention domain, SYN III gene in executive function. Nord J Psychiatry 1–6

  34. Edgünlü TG, Özge A, Yalin OÖ et al (2012) Genetic variants of synaptic vesicle and presynaptic plasma membrane proteins in Alzheimer’s disease. Noro Psikiyatr Ars 49(4)

  35. Giovedí S, Corradi A, Fassio A et al (2014) Involvement of synaptic genes in the pathogenesis of autism spectrum disorders: the case of synapsins. Front Pediatr 2:94

    PubMed  PubMed Central  Google Scholar 

  36. Ahring PK, Liao VW, Gardella E et al (2022) Gain-of-function variants in GABRD reveal a novel pathway for neurodevelopmental disorders and epilepsy. Brain 145(4):1299–1309

    Article  PubMed  Google Scholar 

  37. Sesarini CV, Costa L, Naymark M et al (2014) Evidence for interaction between markers in GABA (A) receptor subunit genes in an A rgentinean autism spectrum disorder population. Autism Res 7(1):162–166

    Article  PubMed  Google Scholar 

  38. Lu ATH, Dai X, Martinez-Agosto JA et al (2012) Support for calcium channel gene defects in autism spectrum disorders. Mol autism 3(1):1–9

    Article  Google Scholar 

  39. Delorme R, Betancur C, Scheid I et al (2010) Mutation screening of NOS1AP gene in a large sample of psychiatric patients and controls. BMC Med Genet 11(1):1–9

    Article  Google Scholar 

  40. Hepler JR, Gilman AG (1992) G proteins. Trends Biochem Sci 17(10):383–387

    Article  CAS  PubMed  Google Scholar 

  41. Jiang M, Bajpayee NS (2009) Molecular mechanisms of go signaling. Neurosignals 17(1):23–41

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jiang M, Gold MS, Boulay G et al (1998) Multiple neurological abnormalities in mice deficient in the G protein Go. Proc Natl Acad Sci 95(6):3269–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Skafidas E, Testa R, Zantomio D et al (2014) Predicting the diagnosis of autism spectrum disorder using gene pathway analysis. Mol Psychiatry 19(4):504–510

    Article  CAS  PubMed  Google Scholar 

  44. Gerald B, Ramsey K, Belnap N et al (2018) Neonatal epileptic encephalopathy caused by de novo GNAO1 mutation misdiagnosed as atypical Rett syndrome: cautions in interpretation of genomic test results. In Semin Pediatr Neurol 26:28–32

  45. Schirinzi T, Garone G, Travaglini L et al (2019) Phenomenology and clinical course of movement disorder in GNAO1 variants: results from an analytical review. Parkinsonism Relat Disord 61:19–25

    Article  PubMed  Google Scholar 

  46. Danti FR, Galosi S, Romani M et al (2017) GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome. Neurol Genet 3:e143

    Article  PubMed  PubMed Central  Google Scholar 

  47. Muir AM, Myers CT, Nguyen NT et al (2019) Genetic heterogeneity in infantile spasms. Epilepsy Res 156:106181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marcé-Grau A, Dalton J, López-Pisón J et al (2016) GNAO1 encephalopathy: further delineation of a severe neurodevelopmental syndrome affecting females. Orphanet J Rare Dis 11(1):1–9

    Article  Google Scholar 

  49. Lakhan R, Kalita J, Misra UK et al (2010) Association of intronic polymorphism rs3773364 A> G in synapsin-2 gene with idiopathic epilepsy. Synapse 64(5):403–408

    Article  CAS  PubMed  Google Scholar 

  50. O’Connell KS, McGregor NW, Lochner C et al (2018) The genetic architecture of schizophrenia, bipolar disorder, obsessive-compulsive disorder and autism spectrum disorder. Mol Cell Neurosci 88:300–307

    Article  CAS  PubMed  Google Scholar 

  51. Sharma AR, Batra G, Saini L et al (2022) Valproic acid and propionic acid modulated mechanical pathways associated with autism spectrum disorder at prenatal and neonatal exposure. CNS Neurol Disord Drug Targets 21(5):399–408

    Article  CAS  PubMed  Google Scholar 

  52. Fassio A, Patry L, Congia S et al (2011) SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet 20(12):2297–2307

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This paper was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No: 1919B012003527.

Author information

Authors and Affiliations

Authors

Contributions

Remzi Oguz BARIS: Investigation, Writing-Original Draft, Visualization; Nilfer SAHİN: Conceptualizaton, Resources, Investigation, Writing-Original Draft, Visualization; Aysegul DEMIRTAS BILGIC: Investigation, Writing-Original Draft, Visualization; Cilem OZDEMİR: Investigation, Writing-Original Draft, Visualization; Tuba GOKDOGAN EDGUNLU: Conceptualizaton, Resources, Writing-Review and Editing, Supervision, Project Administration. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Cilem Ozdemir.

Ethics declarations

Ethics approval

The study was approved by Muğla Sıtkı Koçman University Medical Faculty Ethics Committee and was conducted according to the Declaration of Helsinki, and informed consent was obtained from all participants. The procedures used in this study adhere to the tenets of the Declaration of Helsinki. Informed consent and written informed consent were obtained from all patients prior to their participation in the study.

Consent for publication

Consent has been granted by all authors for the publication of this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baris, R.O., Sahin, N., Bilgic, A.D. et al. Molecular and in silico analyses of SYN III gene variants in autism spectrum disorder. Ir J Med Sci 192, 2887–2895 (2023). https://doi.org/10.1007/s11845-023-03402-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-023-03402-w

Keywords

Navigation