Skip to main content

Advertisement

Log in

Evaluation of IL-10, MCP-1, IFN gamma, and protectin D1 levels in patients with Hashimoto’s thyroiditis

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Purpose

Hashimoto’s thyroiditis (HT) is one of the most prevalent autoimmune endocrine diseases and caused by the loss of immune tolerance for the thyroid gland. Many pathophysiological mechanisms were speculated about the development of HT. In our study, we aimed to reveal the relationship between HT and IL-10, MCP-1, IFNɤ, and PD1 levels and compare them with control subjects.

Methods

We collected 37 patients with HT and 25 controls referred to our outpatient clinic. The diagnosis of HT was based on the detection of circulating antibodies to thyroid antigens and decreasing echogenicity on thyroid USG in patients with appropriate clinical characteristics. Serum IL-10, MCP-1, IFNɤ, and PD1 levels were detected using an ELISA KIT (96 T) method according to the manufacturer’s instructions.

Results

All subjects were euthyroid (median TSH level was 1.68 mU/L in HT vs 1.83 mU/L in the controls, p = 0.672). Twenty-three of 37 patients with HT were taking L-thyroxin replacement. Levels of serum IL-10, IFNɤ, and PD1 in patients with HT were higher than the controls, but the differences were not statistically significant (p = 0.393, p = 0.495, and p = 0.052 respectively). The serum levels of MCP-1 in HT patients were statistically different and higher than the controls (p = 0.018). Correlation analysis displayed significant associations between IL-10, MCP-1, IFNɤ, and PD1 levels.

Conclusion

Our study demonstrated that serum MCP-1 levels in HT patients were significantly increased; on the other hand, significant difference was not found between HT patients and the controls in terms of serum IL-10, IFNɤ, and PD1 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Antonelli A, Ferrari SM, Corrado A et al (2015) Autoimmune thyroid disorders. Autoimmun Rev 14:174–180

    Article  CAS  Google Scholar 

  2. Bogdanos DP, Smyk DS, Rigopoulou EI et al (2012) Twin studies in autoimmune disease: genetics, gender and environment. J Autoimmun 38:J156–J169

    Article  Google Scholar 

  3. Tomer Y (2014) Mechanisms of autoimmune thyroid diseases: from genetics to epigenetics. Annu Rev Pathol 9:147–156

    Article  CAS  Google Scholar 

  4. Akahane M, Watanabe M, Inoue N et al (2016) Association of the polymorphisms of chemokine genes (IL8, RANTES, MIG, IP10, MCP1 and IL16) with the pathogenesis of autoimmune thyroid diseases. Autoimmunity 49:312–319

    Article  CAS  Google Scholar 

  5. Raoof IB, Mohsin RA, Okhti ZA (2021) The prevalence role of monocyte chemoattractant protein-1 in Hashimoto’s thyroiditis via various stimuli mechanisms. J Pharm Bioallied Sci 13:244–247

    CAS  Google Scholar 

  6. Ruggeri RM, Saitta S, Cristani M et al (2014) Serum interleukin-23 (IL-23) is increased in Hashimoto’s thyroiditis. Endocr J 61:359–363

    Article  CAS  Google Scholar 

  7. Moore KW, de Waal MR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  CAS  Google Scholar 

  8. de la Vega JR, Vilaplana JC, Biro A et al (1998) IL-10 expression in thyroid glands: protective or harmful role against thyroid autoimmunity? Clin Exp Immunol 113:126–135

    Article  Google Scholar 

  9. Rott O, Fleischer B, Cash E (1994) Interleukin-10 prevents experimental allergic encephalomyelitis in rats. Eur J Immunol 24:1434–1440

    Article  CAS  Google Scholar 

  10. O'Sullivan ST, Lederer JA, Horgan AF et al (1995) Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann Surg 222:482–90; discussion 90–2

  11. Mehrabian M, Sparkes RS, Mohandas T et al (1991) Localization of monocyte chemotactic protein-1 gene (SCYA2) to human chromosome 17q11.2-q21.1. Genomics 9:200–3

  12. Gulgun M (2018) The level of monocyte chemoattractant protein-1 may be affected by several factors. Med Princ Pract 27:400

    Article  Google Scholar 

  13. Yoshimura T (2017) The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine 98:71–78

    Article  CAS  Google Scholar 

  14. Kemp EH, Metcalfe RA, Smith KA et al (2003) Detection and localization of chemokine gene expression in autoimmune thyroid disease. Clin Endocrinol (Oxf) 59:207–213

    Article  CAS  Google Scholar 

  15. Salzano M, Russo E, Postiglione L et al (2012) Interferon-γ inhibits integrin-mediated adhesion to fibronectin and survival signaling in thyroid cells. J Endocrinol 215:439–444

    Article  CAS  Google Scholar 

  16. Christie WW, Harwood JL (2020) Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem 64:401–421

    Article  CAS  Google Scholar 

  17. Caturegli P, De Remigis A, Rose NR (2014) Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev 13:391–397

    Article  CAS  Google Scholar 

  18. Caturegli P, De Remigis A, Chuang K et al (2013) Hashimoto’s thyroiditis: celebrating the centennial through the lens of the Johns Hopkins hospital surgical pathology records. Thyroid 23:142–150

    Article  Google Scholar 

  19. Ajjan RA, Weetman AP (2015) The pathogenesis of Hashimoto’s thyroiditis: further developments in our understanding. Horm Metab Res 47:702–710

    Article  CAS  Google Scholar 

  20. González-Amaro R, Marazuela M (2016) T regulatory (Treg) and T helper 17 (Th17) lymphocytes in thyroid autoimmunity. Endocrine 52:30–38

    Article  Google Scholar 

  21. Yu S, Qi Y, Wang H et al (2017) Dysfunction of CD24+CD38+ B cells in patients with Hashimoto’s thyroiditis is associated with a lack of interleukin 10. Int J Biochem Cell Biol 90:114–120

    Article  CAS  Google Scholar 

  22. Takuse Y, Watanabe M, Inoue N et al (2017) Association of IL-10-regulating MicroRNAs in peripheral blood mononuclear cells with the pathogenesis of autoimmune thyroid disease. Immunol Invest 46:590–602

    Article  CAS  Google Scholar 

  23. Gillitzer R, Wolff K, Tong D et al (1993) MCP-1 mRNA expression in basal keratinocytes of psoriatic lesions. J Invest Dermatol 101:127–131

    Article  CAS  Google Scholar 

  24. Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (1998) Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 84:238–249

    Article  CAS  Google Scholar 

  25. Villiger PM, Terkeltaub R, Lotz M (1992) Production of monocyte chemoattractant protein-1 by inflamed synovial tissue and cultured synoviocytes. J Immunol 149:722–727

    Article  CAS  Google Scholar 

  26. Hashimoto S, Nakayama T, Gon Y et al (1998) Correlation of plasma monocyte chemoattractant protein-1 (MCP-1) and monocyte inflammatory protein-1alpha (MIP-1alpha) levels with disease activity and clinical course of sarcoidosis. Clin Exp Immunol 111:604–610

    Article  CAS  Google Scholar 

  27. Raman D, Baugher PJ, Thu YM, Richmond A (2007) Role of chemokines in tumor growth. Cancer Lett 256:137–165

    Article  CAS  Google Scholar 

  28. Geller MA, Bui-Nguyen TM, Rogers LM, Ramakrishnan S (2010) Chemotherapy induces macrophage chemoattractant protein-1 production in ovarian cancer. Int J Gynecol Cancer 20:918–925

    Article  Google Scholar 

  29. García-López MA, Sancho D, Sánchez-Madrid F, Marazuela M (2001) Thyrocytes from autoimmune thyroid disorders produce the chemokines IP-10 and Mig and attract CXCR3+ lymphocytes. J Clin Endocrinol Metab 86:5008–5016

    Article  Google Scholar 

  30. Kasai K, Banba N, Motohashi S et al (1996) Expression of monocyte chemoattractant protein-1 mRNA and protein in cultured human thyrocytes. FEBS Lett 394:137–140

    Article  CAS  Google Scholar 

  31. Răcătăianu N, Leach NV, Bolboacă SD et al (2018) Vitamin D deficiency, insulin resistance and thyroid dysfunction in obese patients: is inflammation the common link? Scand J Clin Lab Invest 78:560–565

    Article  Google Scholar 

  32. Shi Y, Wang H, Su Z et al (2010) Differentiation imbalance of Th1/Th17 in peripheral blood mononuclear cells might contribute to pathogenesis of Hashimoto’s thyroiditis. Scand J Immunol 72:250–255

    Article  CAS  Google Scholar 

  33. Roura-Mir C, Catálfamo M, Sospedra M et al (1997) Single-cell analysis of intrathyroidal lymphocytes shows differential cytokine expression in Hashimoto’s and Graves’ disease. Eur J Immunol 27:3290–3302

    Article  CAS  Google Scholar 

  34. Heuer M, Aust G, Ode-Hakim S (1996) Different cytokine mRNA profiles in Graves’ disease, Hashimoto’s thyroiditis, and nonautoimmune thyroid disorders determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Thyroid 6:97–106

    Article  CAS  Google Scholar 

  35. Guo H, Peng D, Yang XG et al (2014) A higher frequency of circulating IL-22(+)CD4(+) T cells in Chinese patients with newly diagnosed Hashimoto’s thyroiditis. PLoS ONE 9:e84545

    Article  Google Scholar 

  36. Setoguchi J, Nakano K, Tsutsumi Y et al (1991) Interferon-alpha and gamma product in peripheral blood of patients with thyroid diseases. Nihon Naibunpi Gakkai Zasshi 67:630–5

  37. Jiskra J, Antosová M, Límanová Z et al (2009) The relationship between thyroid function, serum monokine induced by interferon gamma and soluble interleukin-2 receptor in thyroid autoimmune diseases. Clin Exp Immunol 156:211–216

    Article  CAS  Google Scholar 

  38. Matsubayashi S, Kasuga Y, Sakatsume Y et al (1990) Serum interferon gamma levels in autoimmune thyroid disease. Clin Invest Med 13:271–274

    CAS  Google Scholar 

  39. Caturegli P, Hejazi M, Suzuki K et al (2000) Hypothyroidism in transgenic mice expressing IFN-gamma in the thyroid. Proc Natl Acad Sci U S A 97:1719–1724

    Article  CAS  Google Scholar 

  40. Fredman G, Serhan CN (2011) Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution. Biochem J 437:185–197

    Article  CAS  Google Scholar 

  41. Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15:551–567

    Article  CAS  Google Scholar 

  42. Duffield JS, Hong S, Vaidya VS et al (2006) Resolvin D series and protectin D1 mitigate acute kidney injury. J Immunol 177:5902–5911

    Article  CAS  Google Scholar 

  43. Song J, Sun R, Zhang Y, Fu Y, Zhao D (2021a) Role of the specialized pro-resolving mediator resolvin D1 in Hashimoto’s thyroiditis. Exp Clin Endocrinol Diabetes 129:791–797

    Article  CAS  Google Scholar 

  44. Song J, Sun R, Zhang Y, Ke J, Zhao D (2021b) Serum resolvin E1 levels and its relationship with thyroid autoimmunity in Hashimoto’s thyroiditis: a preliminary study. BMC Endocr Disord 21:66

    Article  CAS  Google Scholar 

  45. Dalli J, Serhan CN (2019) Identification and structure elucidation of the pro-resolving mediators provides novel leads for resolution pharmacology. Br J Pharmacol 176:1024–1037

    Article  CAS  Google Scholar 

  46. Makino Y, Miyahara T, Nitta J et al (2019) Proresolving lipid mediators resolvin D1 and protectin D1 isomer attenuate neointimal hyperplasia in the rat carotid artery balloon injury model. J Surg Res 233:104–110

    Article  CAS  Google Scholar 

  47. Gobbetti T, Dalli J, Colas RA et al (2017) Protectin D1. Proc Natl Acad Sci USA 114:3963–3968

    Article  CAS  Google Scholar 

  48. Wu Z, Lu G, Zhang L et al (2021) Protectin D1 decreases pancreatitis severity in mice by inhibiting neutrophil extracellular trap formation. Int Immunopharmacol 94:107486

    Article  CAS  Google Scholar 

  49. Wu Z, Zhang L, Zhao X et al (2021) Protectin D1 protects against lipopolysaccharide-induced acute lung injury through inhibition of neutrophil infiltration and the formation of neutrophil extracellular traps in lung tissue. Exp Ther Med 22:1074

    Article  CAS  Google Scholar 

  50. Song MK, Park BB, Uhm J (2019) Understanding immune evasion and therapeutic targeting associated with PD-1/PD-L1 pathway in diffuse large B-cell lymphoma. Int J Mol Sci 20

Download references

Acknowledgements

We are grateful to Ahmet Topacoglu for his linguistic revision.

Funding

This project was supported by Ege University Scientific Research Projects Coordination Unit through Project Number: TGA-2022-23376.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HO, ME,NSG. Data preparation/acquisition: HO, AC, BO. Methodology: BD, AC, HO. Statistical analysis: AS Writing—original draft preparation: HO, AS, BD. Supervision: NSG, GO, ME

Corresponding author

Correspondence to Hatice Ozisik.

Ethics declarations

Ethical approval

The study protocol was approved by the Ethics Committee of Ege University Faculty of Medicine (21-9 T/11).

Informed consent

We obtained informed consent from the patients.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozisik, H., Cekin, A., Suner, A. et al. Evaluation of IL-10, MCP-1, IFN gamma, and protectin D1 levels in patients with Hashimoto’s thyroiditis. Ir J Med Sci 192, 177–184 (2023). https://doi.org/10.1007/s11845-022-03231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-022-03231-3

Keywords

Navigation