Skip to main content

Advertisement

Log in

Maternally transmitted diabetes mellitus may be associated with mitochondrial ND5 T12338C and tRNAAla T5587C variants

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Introduction

Mutations/variants in mitochondrial genomes are found to be associated with type 2 diabetes mellitus (T2DM), but the pathophysiology of this disease remains largely unknown.

Aim

The aim of this study is to investigate the relationship between mitochondrial DNA (mtDNA) variants and T2DM.

Methodology

A maternally inherited T2DM pedigree is underwent clinical, genetic, and molecular assessment. Moreover, the complete mitochondrial genomes of the matrilineal relatives of this family are PCR amplified and sequenced. We also utilize the phylogenetic conservation analysis, haplogroup classification, and the pathogenicity scoring system to determine the T2DM-associated potential pathogenic mtDNA variants.

Result

Four of seven matrilineal relatives of this pedigree suffered from T2DM with variable ages of onset. Screening for the entire mtDNA genes of matrilineal members reveals co-existence of ND5 T12338C and tRNAAla T5587C variants, as well as 21 genetic polymorphisms which belong to East Asian haplogroup F2. Interestingly, the T12338C variant causes the alternation of first amino acid Met to Thr, shortened two amino acids of ND5 protein. Furthermore, T5587C variant is located at position 73 in the 3’end of mt-tRNAAla and may have structural and functional consequences.

Conclusions

The co-occurrence of ND5 T12338C and tRNAAla T5587C variants may impair the mitochondrial function, which are associated with the development of T2DM in this family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414(6865):782–787

    Article  CAS  PubMed  Google Scholar 

  2. Roglic G, Unwin N (2010) Mortality attributable to diabetes: estimates for the year 2010. Diabetes Res Clin Pract 87(1):15–19

    Article  PubMed  Google Scholar 

  3. Festa A, Williams K, D’Agostino R Jr et al (2006) The natural course of beta-cell function in nondiabetic and diabetic individuals: the Insulin Resistance Atherosclerosis Study. Diabetes 55(4):1114–1120

    Article  CAS  PubMed  Google Scholar 

  4. Kumar P, Liu C, Suliburk JW et al (2020) Supplementing glycine and N-acetylcysteine (GlyNAC) in aging HIV patients improves oxidative stress, mitochondrial dysfunction, inflammation, endothelial dysfunction, insulin resistance, genotoxicity, strength, and cognition: results of an open-label clinical trial. Biomedicines 8(10):E390

    Article  PubMed  Google Scholar 

  5. Townsend LK, Brunetta BS, Mori MA (2020) Mitochondria-associated ER membranes in glucose homeostasis and insulin resistance. Am J Physiol Endocrinol Metab 319(6):E1053–E1060

    Article  CAS  PubMed  Google Scholar 

  6. Pinti MV, Fink GK, Hathaway QA et al (2019) Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab 316(2):E268–E285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Skuratovskaia D, Komar A, Vulf M et al (2020) Mitochondrial destiny in type 2 diabetes: the effects of oxidative stress on the dynamics and biogenesis of mitochondria. PeerJ 8: e9741

  8. He ZF, Zheng LC, Xie DY et al (2017) Mutational analysis of mitochondrial tRNA genes in patients with lung cancer. Balkan J Med Genet 19(2):45–50

    Article  PubMed  Google Scholar 

  9. Guo ZS, Jin CL, Yao ZJ et al (2017) Analysis of the mitochondrial 4977 Bp deletion in patients with hepatocellular carcinoma. Balkan J Med Genet 20(1):81–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Majamaa K, Moilanen JS, Uimonen S et al (1998) Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet 63(2):447–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ding Y, Xia BH, Zhang CJ et al (2018) Mitochondrial tRNALeu(UUR) C3275T, tRNAGln T4363C and tRNALys A8343G mutations may be associated with PCOS and metabolic syndrome. Gene 642:299–306

    Article  CAS  PubMed  Google Scholar 

  12. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl. 1):S62–S69

    Article  PubMed Central  Google Scholar 

  13. Lin L, Cui P, Qiu Z et al (2019) The mitochondrial tRNAAla 5587T>C and tRNALeu(CUN) 12280A>G mutations may be associated with hypertension in a Chinese family. Exp Ther Med 17(3):1855–1862

    CAS  PubMed  Google Scholar 

  14. Committee JN, on Prevention, Detection, Evaluation and Treatment of High Blood Pressure, (1997) The sixth report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. Arch Intern Med 157(21):2413–2446

    Article  Google Scholar 

  15. Qu J, Li R, Zhou X et al (2006) The novel A4435G mutation in the mitochondrial tRNAMet may modulate the phenotypic expression of the LHON-associated ND4 G11778A mutation. Invest Ophthalmol Vis Sci 47(2):475–483

    Article  PubMed  Google Scholar 

  16. Ding Y, Zhuo G, Zhang C (2016) The mitochondrial tRNALeu(UUR) A3302G mutation may be associated with insulin resistance in woman with polycystic ovary syndrome. Reprod Sci 23(2):228–233

    Article  CAS  PubMed  Google Scholar 

  17. Rieder MJ, Taylor SL, Tobe VO et al (1998) Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acids Res 26(4):967–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andrews RM, Kubacka I, Chinnery PF et al (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23(2):147

    Article  CAS  PubMed  Google Scholar 

  19. Levin L, Zhidkov I, Gurman Y et al (2013) Functional recurrent mutations in the human mitochondrial phylogeny: dual roles in evolution and disease. Genome Biol Evol 5(5):876–890

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kong QP, Bandelt HJ, Sun C et al (2006) Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet 15(13):2076–2086

    Article  CAS  PubMed  Google Scholar 

  21. Yarham JW, Al-Dosary M, Blakely EL et al (2011) A comparative analysis approach to determining the pathogenicity of mitochondrial tRNA mutations. Hum Mutat 32(11):1319–1325

    Article  CAS  PubMed  Google Scholar 

  22. López-Lluch G, Hernández-Camacho JD, Fernández-Ayala DJM et al (2018) Mitochondrial dysfunction in metabolism and ageing: shared mechanisms and outcomes? Biogerontology 19(6):461–480

    Article  PubMed  Google Scholar 

  23. Bibb MJ, Van Etten RA, Wright CT et al (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26(2 Pt 2):167–180

    Article  CAS  PubMed  Google Scholar 

  24. Gadaleta G, Pepe G, De Candia G et al (1989) The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28(6):497–516

    Article  CAS  PubMed  Google Scholar 

  25. Roe BA, Ma DP, Wilson RK et al (1985) The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem 260(17):9759–9774

    Article  CAS  PubMed  Google Scholar 

  26. Ji Y, Qiao L, Liang X et al (2017) Leber's hereditary optic neuropathy is potentially associated with a novel m.5587T>C mutation in two pedigrees. Mol Med Rep 16(6): 8997–9004

  27. Jiang P, Ling Y, Zhu T et al (2020) Mitochondrial tRNA mutations in Chinese children with tic disorders. Biosci Rep 40(12): BSR20201856

  28. Tang X, Li R, Zheng J et al (2010) Maternally inherited hearing loss is associated with the novel mitochondrial tRNA Ser (UCN) 7505T>C mutation in a Han Chinese family. Mol Genet Metab 100(1):57–64

    Article  CAS  PubMed  Google Scholar 

  29. Crimi M, Sciacco M, Galbiati S et al (2002) A collection of 33 novel human mtDNA homoplasmic variants. Hum Mutat 20(5):409

    Article  PubMed  Google Scholar 

  30. Ji Y, Nie Z, Meng F et al (2021) Mechanistic insights into mitochondrial tRNAAla 3'-end metabolism deficiency. J Biol Chem 297(1): 100816.

  31. Liu XL, Zhou X, Zhou J et al (2011) Leber’s hereditary optic neuropathy is associated with the T12338C mutation in mitochondrial ND5 gene in six Han Chinese families. Ophthalmology 118(5):978–985

    Article  PubMed  Google Scholar 

  32. Ding Y, Zhuo G, Zhang C et al (2016) Point mutation in mitochondrial tRNA gene is associated with polycystic ovary syndrome and insulin resistance. Mol Med Rep 13(4):3169–3172

    Article  CAS  PubMed  Google Scholar 

  33. Zhang J, Ji Y, Lu Y et al (2018) Leber’s hereditary optic neuropathy (LHON)-associated ND5 12338T > C mutation altered the assembly and function of complex I, apoptosis and mitophagy. Hum Mol Genet 27(11):1999–2011

    Article  CAS  PubMed  Google Scholar 

  34. Teng L, Zheng J, Leng J et al (2012) Clinical and molecular characterization of a Han Chinese family with high penetrance of essential hypertension. Mitochondrial DNA 23(6):461–465

    Article  CAS  PubMed  Google Scholar 

  35. Chen B, Sun D, Yang L et al (2008) Mitochondrial ND5 T12338C, tRNA(Cys) T5802C, and tRNA(Thr) G15927A variants may have a modifying role in the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation in three Han Chinese pedigrees. Am J Med Genet A 146A(10):1248–1258

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ding.

Ethics declarations

Ethical approval

This work is approved by the Ethics Committee of Second Affiliated Hospital of Zhejiang University (Approval Number: 2021–0382).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Cai, X., Kong, J. et al. Maternally transmitted diabetes mellitus may be associated with mitochondrial ND5 T12338C and tRNAAla T5587C variants. Ir J Med Sci 191, 2625–2633 (2022). https://doi.org/10.1007/s11845-021-02911-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-021-02911-w

Keywords

Navigation