Skip to main content

Advertisement

Log in

The interplay of long noncoding RNA HULC with microRNA-128-3p and their correlations with lipid level, stenosis degree, inflammatory cytokines, and cell adhesion molecules in coronary heart disease patients

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

Long noncoding RNA HULC (lnc-HULC) and its target microRNA-128-3p (miR-128-3p) regulate endothelial cell function, blood lipid level, and inflammatory cytokine production, which are involved in the pathogenesis of coronary heart disease (CHD). Based on the above information, this study intended to further investigate the correlation between lnc-HULC and miR-128-3p, as well as their clinical values for CHD management.

Methods

Totally, 141 CHD patients and 70 controls were enrolled. Lnc-HULC and miR-128-3p in peripheral blood mononuclear cells were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Serum inflammatory cytokines and cell adhesion molecules were further determined by enzyme-linked immunosorbent assay (ELISA) in CHD patients.

Results

Lnc-HULC was upregulated, while miR-128-3p was downregulated in CHD patients than in controls (both P < 0.001). The ROC curve further displayed that lnc-HULC (AUC: 0.906, 95% CI: 0.867–0.945) and miR-128-3p (AUC: 0.814, 95% CI: 0.756–0.873) had the potential of discriminating CHD patients from controls. Regarding the correlation between lnc-HULC and miR-128-3p, lnc-HULC was negatively associated with miR-128-3p in CHD patients (rs =  − 0.307, P < 0.001), but this association was not observed in controls (rs =  − 0.155, P = 0.199). Furthermore, it was discovered that upregulated lnc-HULC was associated with elevated blood lipid levels (TG, LDL-C), inflammatory cytokines (interleukin (IL)-1β, IL-17A), cell adhesion molecules (VCAM-1), and Gensini score (all P < 0.05) in CHD patients. Meanwhile, miR-128-3p was negatively associated with blood lipid level (LDL-C), inflammatory cytokines (TNF-α, IL-1β, IL-6), cell adhesion molecules (VCAM-1, ICAM-1), and Gensini score (all P < 0.05) in CHD patients.

Conclusion

Lnc-HULC and its target miR-128-3p relate to lipid level, stenosis degree, inflammatory cytokines, and cell adhesion molecules in CHD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Makki N, Brennan TM, Girotra S (2015) Acute coronary syndrome. J Intensive Care Med 30(4):186–200. https://doi.org/10.1177/0885066613503294

    Article  PubMed  Google Scholar 

  2. Severino P, D'Amato A, Pucci M et al (2020) Ischemic heart disease pathophysiology paradigms overview: from plaque activation to microvascular dysfunction. Int J Mol Sci 21 (21). https://doi.org/10.3390/ijms21218118

  3. Ma LY, Chen WW, Gao RL et al (2020) China cardiovascular diseases report 2018: an updated summary. J Geriatr Cardiol 17(1):1–8. https://doi.org/10.11909/j.issn.1671-5411.2020.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Smith JN, Negrelli JM, Manek MB et al (2015) Diagnosis and management of acute coronary syndrome: an evidence-based update. J Am Board Fam Med 28(2):283–293. https://doi.org/10.3122/jabfm.2015.02.140189

    Article  PubMed  Google Scholar 

  5. Jia S, Liu Y, Yuan J (2020) Evidence in guidelines for treatment of coronary artery disease. Adv Exp Med Biol 1177:37–73. https://doi.org/10.1007/978-981-15-2517-9_2

    Article  CAS  PubMed  Google Scholar 

  6. Andreou I, Stone PH, Ikonomidis I et al (2020) Recurrent atherosclerosis complications as a mechanism for stent failure. Hellenic J Cardiol 61(1):9–14. https://doi.org/10.1016/j.hjc.2019.04.007

    Article  PubMed  Google Scholar 

  7. Patel MR, Norgaard BL, Fairbairn TA et al (2020) 1-year impact on medical practice and clinical outcomes of FFRCT: the ADVANCE Registry. JACC Cardiovasc Imaging 13(1 Pt 1):97–105. https://doi.org/10.1016/j.jcmg.2019.03.003

    Article  PubMed  Google Scholar 

  8. Kosmas N, Manolis AS, Dagres N et al (2020) Myocardial infarction or acute coronary syndrome with non-obstructive coronary arteries and sudden cardiac death: a missing connection. Europace 22(9):1303–1310. https://doi.org/10.1093/europace/euaa156

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pouralijan Amiri M, Khoshkam M, Salek RM et al (2019) Metabolomics in early detection and prognosis of acute coronary syndrome. Clin Chim Acta 495:43–53. https://doi.org/10.1016/j.cca.2019.03.1632

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Song D (2020) LPS promotes the progression of sepsis by activation of lncRNA HULC/miR-204-5p/TRPM7 network in HUVECs. Biosci Rep 40 (6). https://doi.org/10.1042/BSR20200740

  11. Liang H, Li F, Li H et al (2021) Overexpression of lncRNA HULC attenuates myocardial ischemia/reperfusion injury in rat models and apoptosis of hypoxia/reoxygenation cardiomyocytes via targeting miR-377-5p through NLRP3/Caspase1/IL1beta signaling pathway inhibition. Immunol Invest 50(8):925–938. https://doi.org/10.1080/08820139.2020.1791178

    Article  CAS  PubMed  Google Scholar 

  12. Cui M, Xiao Z, Wang Y et al (2015) Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway. Cancer Res 75(5):846–857. https://doi.org/10.1158/0008-5472.CAN-14-1192

    Article  CAS  PubMed  Google Scholar 

  13. Yang W, Luo X, Liu Y et al (2020) Potential role of lncRNA HULC/miR1283p/RAC1 axis in the inflammatory response during LPSinduced sepsis in HMEC1 cells. Mol Med Rep 22(6):5095–5104. https://doi.org/10.3892/mmr.2020.11601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang P, Han J, Li S et al (2021) miR-128-3p inhibits apoptosis and inflammation in LPS-induced sepsis by targeting TGFBR2. Open Med (Wars) 16(1):274–283. https://doi.org/10.1515/med-2021-0222

    Article  CAS  Google Scholar 

  15. Geovanini GR, Libby P (2018) Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond) 132(12):1243–1252. https://doi.org/10.1042/CS20180306

    Article  CAS  Google Scholar 

  16. Gimbrone MA Jr, Garcia-Cardena G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118(4):620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan S, Cui Y, Fu Z et al (2019) MicroRNA-128 is involved in dexamethasone-induced lipid accumulation via repressing SIRT1 expression in cultured pig preadipocytes. J Steroid Biochem Mol Biol 186:185–195. https://doi.org/10.1016/j.jsbmb.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  18. Chandra A, Sharma K, Pratap K et al (2021) Inhibition of microRNA-128-3p attenuates hypercholesterolemia in mouse model. Life Sci 264:118633. https://doi.org/10.1016/j.lfs.2020.118633

    Article  CAS  PubMed  Google Scholar 

  19. Yan P, Sun C, Ma J et al (2019) MicroRNA-128 confers protection against cardiac microvascular endothelial cell injury in coronary heart disease via negative regulation of IRS1. J Cell Physiol 234(8):13452–13463. https://doi.org/10.1002/jcp.28025

    Article  CAS  PubMed  Google Scholar 

  20. Zhao X, Jin Y, Li L et al (2019) MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1. Pharmacol Res 146:104276. https://doi.org/10.1016/j.phrs.2019.104276

    Article  CAS  PubMed  Google Scholar 

  21. Gensini GG (1983) A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol 51(3):606. https://doi.org/10.1016/s0002-9149(83)80105-2

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Zhang X, Su C et al (2020) Long noncoding RNA HULC in acute ischemic stroke: association with disease risk, severity, and recurrence-free survival and relation with IL-6, ICAM1, miR-9, and miR-195. J Clin Lab Anal 34(11):e23500. https://doi.org/10.1002/jcla.23500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ebadi N, Ghafouri-Fard S, Taheri M et al (2020) Dysregulation of autophagy-related lncRNAs in peripheral blood of coronary artery disease patients. Eur J Pharmacol 867:172852. https://doi.org/10.1016/j.ejphar.2019.172852

    Article  CAS  PubMed  Google Scholar 

  24. Ghafouri-Fard S, Gholipour M, Taheri M (2021) The emerging role of long non-coding RNAs and circular RNAs in coronary artery disease. Front Cardiovasc Med 8:632393. https://doi.org/10.3389/fcvm.2021.632393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma Y, Huang D, Yang F et al (2016) Long noncoding RNA highly upregulated in liver cancer regulates the tumor necrosis factor-alpha-induced apoptosis in human vascular endothelial cells. DNA Cell Biol 35(6):296–300. https://doi.org/10.1089/dna.2015.3203

    Article  CAS  PubMed  Google Scholar 

  26. Liu S, Gao S, Yang Z et al (2021) miR-128-3p reduced acute lung injury induced by sepsis via targeting PEL12. Open Med (Wars) 16(1):1109–1120. https://doi.org/10.1515/med-2021-0258

    Article  CAS  Google Scholar 

  27. Farina FM, Hall IF, Serio S et al (2020) miR-128-3p is a novel regulator of vascular smooth muscle cell phenotypic switch and vascular diseases. Circ Res 126(12):e120–e135. https://doi.org/10.1161/CIRCRESAHA.120.316489

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianhong Xie.

Ethics declarations

Consent to participate

All subjects signed the informed consents.

Consent for publication

The Institutional Review Board had given permission for this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Hu, J. & Xie, L. The interplay of long noncoding RNA HULC with microRNA-128-3p and their correlations with lipid level, stenosis degree, inflammatory cytokines, and cell adhesion molecules in coronary heart disease patients. Ir J Med Sci 191, 2597–2603 (2022). https://doi.org/10.1007/s11845-021-02900-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-021-02900-z

Keywords

Navigation