Skip to main content
Log in

The effect of spinal manipulation on brain neurometabolites in chronic nonspecific low back pain patients: a randomized clinical trial

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

In patients with chronic nonspecific low back pain (NCLBP), brain function changes due to the neuroplastic changes in different regions.

Aim

The current study aimed to evaluate the brain metabolite changes after spinal manipulation, using proton magnetic resonance spectroscopy (1H-MRS).

Methods

In the current study, 25 patients with NCLBP aged 20–50 years were enrolled. Patients were randomly assigned to lumbopelvic manipulation or sham. Patients were evaluated before and 5 weeks after treatment by the Numerical Rating Scale (NRS), the Oswestry Disability Index (ODI), and 1H-MRS.

Results

After treatment, severity of pain and functional disability were significantly reduced in the treatment group vs. sham group (p < 0.05). After treatment, N-acetyl aspartate (NAA) in thalamus, insula, dorsolateral prefrontal cortex (DLPFC) regions, as well as choline (Cho) in the thalamus, insula, and somatosensory cortex (SSC) regions, had increased significantly in the treatment group compared with the sham group (p < 0.05). A significant increase was further observed in NAA in thalamus, anterior cingulate cortex (ACC), and SCC regions along with Cho metabolite in thalamus and SCC regions after treatment in the treatment group compared with the baseline measures (p < 0.05). Also, a significant increase was observed in Glx (glutamate and glutamine) levels of thalamus (p = 0.03). There was no significant difference in terms of brain metabolites at baseline and after treatment in the sham group.

Conclusion

In the patient with low back pain, spinal manipulation affects the central nervous system and changes the brain metabolites. Consequently, pain and functional disability are reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamper SJ, Apeldoorn A, Chiarotto A, Smeets R, Ostelo R, Guzman J, Van Tulder M (2015) Multidisciplinary biopsychosocial rehabilitation for chronic low back pain: Cochrane systematic review and meta-analysis. Bmj 350:h444

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhao X, Xu M, Jorgenson K, Kong J (2017) Neurochemical changes in patients with chronic low back pain detected by proton magnetic resonance spectroscopy: a systematic review. NeuroImage: Clin 13:33–38

    Article  Google Scholar 

  3. Koes B, Van Tulder M, Thomas S (2006) Diagnosis and treatment of low back pain. Bmj 332(7555):1430–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manchikanti L, Singh V, Datta S, Cohen SP, Hirsch JA (2009) Comprehensive review of epidemiology, scope, and impact of spinal pain. Pain physician 12(4):E35–E70

    PubMed  Google Scholar 

  5. Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993) Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52(3):259–285

    Article  CAS  PubMed  Google Scholar 

  6. Tracey I, Bushnell MC (2009) How neuroimaging studies have challenged us to rethink: is chronic pain a disease? J pain 10 (11):1113-1120

  7. Hardy JD, Wolff HG, Goodell H (1950) Experimental evidence on the nature of cutaneous hyperalgesia. J Clin Invest 29(1):115–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O’Neill S, Manniche C, Graven-Nielsen T, Arendt-Nielsen L (2007) Generalized deep-tissue hyperalgesia in patients with chronic low-back pain. Eur J Pain 11(4):415–420. https://doi.org/10.1016/j.ejpain.2006.05.009

    Article  PubMed  Google Scholar 

  9. Giesecke T, Gracely RH, Grant MAB, Nachemson A, Petzke F, Williams DA, Clauw DJ (2004) Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 50 (2):613-623. Doi:doi:https://doi.org/10.1002/art.20063

  10. Castro-Sánchez AM, Lara-Palomo IC, Matarán-Peñarrocha GA, Fernández-de-las-Peñas C, Saavedra-Hernández M, Cleland J, Aguilar-Ferrándiz ME (2016) Short-term effectiveness of spinal manipulative therapy versus functional technique in patients with chronic nonspecific low back pain: a pragmatic randomized controlled trial. Spine J 16(3):302–312

    Article  PubMed  Google Scholar 

  11. Kregel J, Meeus M, Malfliet A, Dolphens M, Danneels L, Nijs J, Cagnie B (2015) Structural and functional brain abnormalities in chronic low back pain: a systematic review. Semin Arthritis Rheum 45(2):229–237

    Article  PubMed  Google Scholar 

  12. Grachev I, Fredrickson B, Apkarian A (2002) Brain chemistry reflects dual states of pain and anxiety in chronic low back pain. J Neural Transm 109(10):1309–1334

    Article  CAS  PubMed  Google Scholar 

  13. Grachev I, Ramachandran T, Thomas P, Szeverenyi N, Fredrickson B (2003) Association between dorsolateral prefrontal N-acetyl aspartate and depression in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. J Neural Transm 110(3):287–312

    Article  CAS  PubMed  Google Scholar 

  14. Grachev ID, Fredrickson BE, Apkarian AV (2000) Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 89(1):7–18

    Article  CAS  Google Scholar 

  15. Siddall PJ, Stanwell P, Woodhouse A, Somorjai RL, Dolenko B, Nikulin A, Bourne R, Himmelreich U, Lean C, Cousins MJ (2006) Magnetic resonance spectroscopy detects biochemical changes in the brain associated with chronic low back pain: a preliminary report. Anesth Analg 102(4):1164–1168

    Article  PubMed  Google Scholar 

  16. Rubinstein SM, van Middelkoop M, Assendelft WJ, de Boer MR, van Tulder MW (2011) Spinal manipulative therapy for chronic low-back pain. Cochrane Database Syst Rev (2):Cd008112. DOI:DOI:https://doi.org/10.1002/14651858.CD008112.pub2

  17. Chown M, Whittamore L, Rush M, Allan S, Stott D, Archer M (2008) A prospective study of patients with chronic back pain randomised to group exercise, physiotherapy or osteopathy. Physiotherapy 94(1):21–28

    Article  Google Scholar 

  18. Globe G, Farabaugh RJ, Hawk C, Morris CE, Baker G, Whalen WM, Walters S, Kaeser M, Dehen M, Augat T (2016) Clinical practice guideline: chiropractic care for low back pain. J Manip Physiol Ther 39(1):1–22

    Article  Google Scholar 

  19. Hidalgo B, Detrembleur C, Hall T, Mahaudens P, Nielens H (2014) The efficacy of manual therapy and exercise for different stages of non-specific low back pain: an update of systematic reviews. J Manual Manipulative Ther 22(2):59–74

    Article  Google Scholar 

  20. Orrock PJ, Myers SP (2013) Osteopathic intervention in chronic non-specific low back pain: a systematic review. BMC Musculoskelet Disord 14(1):129

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haavik H, Murphy B (2012) The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control. J Electromyogr Kinesiol 22(5):768–776

    Article  PubMed  Google Scholar 

  22. Gussew A, Rzanny R, Güllmar D, Scholle H-C, Reichenbach JR (2011) 1H-MR spectroscopic detection of metabolic changes in pain processing brain regions in the presence of non-specific chronic low back pain. Neuroimage 54(2):1315–1323

    Article  PubMed  Google Scholar 

  23. Harris RE, Clauw DJ (2012) Imaging central neurochemical alterations in chronic pain with proton magnetic resonance spectroscopy. Neurosci Lett 520(2):192–196. https://doi.org/10.1016/j.neulet.2012.03.042

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt-Wilcke T (2015) Neuroimaging of chronic pain. Best Pract Res Clin Rheumatol 29(1):29–41

    Article  PubMed  Google Scholar 

  25. Sharma NK, Brooks WM, Popescu AE, VanDillen L, George SZ, McCarson KE, Gajewski BJ, Gorman P, Cirstea CM (2012) Neurochemical analysis of primary motor cortex in chronic low back pain. Brain sci 2(3):319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yabuki S, S-i K, S-i K (2013) Assessment of pain due to lumbar spine diseases using MR spectroscopy: a preliminary report. J Orthop Sci 18(3):363–368

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lin A, Ramadan S, Stanwell P, Luu T, Celestin J, Bajwa Z, Mountford C (2010) In vivo L-COSY MR distinguishes glutamate from glutamine and shows neuropathic pain to cause a build up of glutamine in the brain. Proc Int Soc Magn Reson Med 18:381

    Google Scholar 

  28. Plitman E, Chavez S, Nakajima S, Iwata Y, Chung JK, Caravaggio F, Kim J, Alshehri Y, Chakravarty MM, De Luca V (2018) Striatal neurometabolite levels in patients with schizophrenia undergoing long-term antipsychotic treatment: a proton magnetic resonance spectroscopy and reliability study. Psychiatry Res Neuroimaging 273:16–24

    Article  PubMed  Google Scholar 

  29. Kamali F, Shokri E (2012) The effect of two manipulative therapy techniques and their outcome in patients with sacroiliac joint syndrome. J Bodyw Mov Ther 16(1):29–35

    Article  PubMed  Google Scholar 

  30. Kent P, Keating JL (2005) Classification in nonspecific low back pain: what methods do primary care clinicians currently use? Spine 30(12):1433–1440

    Article  PubMed  Google Scholar 

  31. Farrar JT, Young JP Jr, LaMoreaux L, Werth JL, Poole RM (2001) Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 94(2):149–158

    Article  CAS  Google Scholar 

  32. Mousavi SJ, Parnianpour M, Mehdian H, Montazeri A, Mobini B (2006) The Oswestry disability index, the Roland-Morris disability questionnaire, and the Quebec back pain disability scale: translation and validation studies of the Iranian versions. Spine 31(14):E454–E459

    Article  PubMed  Google Scholar 

  33. Davidson M, Keating JL (2002) A comparison of five low back disability questionnaires: reliability and responsiveness. Phys Ther 82(1):8–24

    Article  PubMed  Google Scholar 

  34. May A (2008) Chronic pain may change the structure of the brain. Pain 137(1):7–15

    Article  PubMed  Google Scholar 

  35. Wand BM, Parkitny L, O’Connell NE, Luomajoki H, McAuley JH, Thacker M, Moseley GL (2011) Cortical changes in chronic low back pain: current state of the art and implications for clinical practice. Manual Ther 16(1):15–20

    Article  Google Scholar 

  36. Alleva J, Hudgins T, Belous J, Origenes AK (2016) Chronic low back pain. Disease-a-Month. 9(62):330–333

    Article  Google Scholar 

  37. Pickar JG, Bolton PS (2012) Spinal manipulative therapy and somatosensory activation. J Electromyogr Kinesiol 22(5):785–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pickar JG (2002) Neurophysiological effects of spinal manipulation. Spine J 2(5):357–371

    Article  PubMed  Google Scholar 

  39. Yuan W, Shen Z, Xue L, Tan W, Cheng Y, Zhan S, Zhan H (2015) Effect of spinal manipulation on brain functional activity in patients with lumbar disc herniation. J Zhejiang Univ Med Sci 44(2):124–130

    Google Scholar 

  40. Kaňovský P, Bareš M, Rektor I (2003) The selective gating of the N30 cortical component of the somatosensory evoked potentials of median nerve is different in the mesial and dorsolateral frontal cortex: evidence from intracerebral recordings. Clin Neurophysiol 114(6):981–991

    Article  PubMed  Google Scholar 

  41. Taylor HH, Murphy B (2010) Altered central integration of dual somatosensory input after cervical spine manipulation. J Manip Physiol Ther 33(3):178–188

    Article  Google Scholar 

  42. Gedin F, Dansk V, Egmar A-C, Sundberg T, Burström K (2018) Patient-reported improvements of pain, disability and health-related quality of life following chiropractic care for back pain–a national observational study in Sweden. J Bodyw Mov Ther doi. https://doi.org/10.1016/j.jbmt.2018.02.012

  43. Coulter ID, Crawford C, Hurwitz EL, Vernon H, Khorsan R, Booth MS, Herman PM (2018) Manipulation and mobilization for treating chronic low back pain: a systematic review and meta-analysis. Spine J 18(5):866–879

    Article  PubMed  PubMed Central  Google Scholar 

  44. Licciardone JC, Gatchel RJ, Aryal S (2016) Recovery from chronic low back pain after osteopathic manipulative treatment: a randomized controlled trial. J Am Osteopath Assoc 116(3):144–155

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This article was extracted from the Physiotherapy Ph.D. thesis (1396-01-06-14881) from Shiraz University of Medical Sciences. The authors wish to thank Mr. H. Argasi at the Research Consultation Center (RCC) of Shiraz University of Medical Sciences for his invaluable assistance in editing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the study. Daryoush Didehdar collected and analyzed the data. All authors discussed the results and commented on the manuscript. All authors have carefully read and reviewed the manuscript.

Corresponding author

Correspondence to Fahimeh Kamali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of Shiraz University of Medical Sciences (IR.SUMS.REC.1396.139) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didehdar, D., Kamali, F., Yoosefinejad, A.K. et al. The effect of spinal manipulation on brain neurometabolites in chronic nonspecific low back pain patients: a randomized clinical trial. Ir J Med Sci 189, 543–550 (2020). https://doi.org/10.1007/s11845-019-02140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-019-02140-2

Keywords

Navigation