Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity?

Abstract

Recent research suggests that the human gastrointestinal microbiota is greatly involved in yielding, storing and expending energy from the diet; therefore, it may be a further factor in linking diet to obesity. The gut microbial composition is affected by diet throughout the human lifespan, and is highly dynamic and efficient in response to dietary alterations in particular to dietary fibre intake. Short-chained fatty acids (SCFA) are the bi-product of fibre fermentation and have both obesogenic and anti-obesogenic properties. The production of specific forms of SCFAs depends on the microbes available in the gut and the type of fibre ingested. The gut microbiome associated with healthy lean individuals has a higher microbial biodiversity and a greater Bacteroidete to Firmicute ratio compared to the obese individuals associated with microbiome. These gut microbial associations are similar to those seen in individuals with high and low dietary fibre intakes, respectively. Metabolites generated by Bacteroidetes and Firmicutes include the three main SCFA related to obesity, namely butyrate, acetate and propionate. However, neither Bacteroidetes nor Firmicutes is purely causative or purely preventative of obesity. More research is crucial in linking the various types of fibre with particular SCFA production and the microbiome it promotes before suggesting that dietary fibre modulation of the gut microbiome can treat obesity. However, the long-term dietary trend plays the principal role in assembling the diversity and abundance of gut microbes; thus, a sustained diet high in fibre may help prevent obesity by promoting a microbiome associated with a lean phenotype.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Adam CL et al (2014) Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats. Nutr Metab 11(1):36

    Article  Google Scholar 

  2. 2.

    Al-Lahham SH et al (2010) Regulation of adipokine production in human adipose tissue by propionic acid. Eur J Clin Investig 40(5):401–407

    CAS  Article  Google Scholar 

  3. 3.

    Anastasiou CA, Karfopoulou E, Yannakoulia M (2015) Weight regaining: from statistics and behaviors to physiology and metabolism. Metabolism 64(11):1395–1407

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Backhed F et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101(44):15718–15723

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Backhed F et al (2005) Host-bacterial mutualism in the human intestine. Science (New York, NY) 307(5717):1915–1920

    Article  Google Scholar 

  7. 7.

    Bäckhed F et al (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci 104(3):979–984

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bäckhed F et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17(5):690–703

    Article  PubMed  Google Scholar 

  9. 9.

    Baer DJ et al (1997) Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans. J Nutr 127(4):579–586

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Benson AK et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107(44):18933–18938

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Braune J. et al. (2017) IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. J Immunol 1600476

  12. 12.

    Chakraborti CK (2015) New-found link between microbiota and obesity. World J Gastrointest Pathophysiol 6(4):110–119

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Chambers ES et al (2015) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64(11):1744–1754 Available at: http://gut.bmj.com/lookup/doi/10.1136/gutjnl-2014-307913

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Chu DM et al (2016) The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med 8(1):77

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Collado MC et al (2016) Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 6:23129

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    David LA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    De Filippo C et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107(33):14691–14696

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    DeGruttola AK et al (2016) Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 22(5):1137–1150

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    DiBaise JK, Frank DN, Mathur R (2012) Impact of the gut microbiota on the development of obesity: current concepts. Am J Gastroenterol Suppl 1(1):22–27

    CAS  Article  Google Scholar 

  20. 20.

    Duncan SH et al (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73(4):1073–1078

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Eckburg PB et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Fernandes J et al (2014) Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 4

  23. 23.

    Finucane MM et al (2014) A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One 9(1):e84689

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gómez-Hernández A et al (2016) Differential role of adipose tissues in obesity and related metabolic and vascular complications. Int J Endocrinol 2016:1–15

    Article  Google Scholar 

  25. 25.

    Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 6(4):295–308

    Article  Google Scholar 

  26. 26.

    Hildebrandt MA et al (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137(5):1716–1724.e2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Human Microbiome Project Consortium, T. (2012a) A framework for human microbiome research. Nature 486

  28. 28.

    Human Microbiome Project Consortium, T. (2012b) Structure, function and diversity of the healthy human microbiome. Nature 486

  29. 29.

    Jonsson A et al (2009) Assessing the effect of interaction between an FTO variant (rs9939609) and physical activity on obesity in 15,925 Swedish and 2,511 Finnish adults. Diabetologia 52(7):1334–1338

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Katzmarzyk PT et al (2005) Metabolic syndrome, obesity, and mortality. Diabetes Care 28(2)

  31. 31.

    Keller M et al (2017) Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metab 6(1):86–100

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Koenig JE et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci 108(Supplement_1):4578–4585

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Kunde S et al (2013) Safety, tolerability, and clinical response after fecal transplantation in children and young adults with ulcerative colitis. J Pediatr Gastroenterol Nutr 56(6):597–601

    Article  PubMed  Google Scholar 

  34. 34.

    Lakshminarayanan B et al (2014) Compositional dynamics of the human intestinal microbiota with aging: implications for health. J Nutr Health Aging 18(9):773–786

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Lederberg J, Mccray AT (2001) ‘Ome sweet ‘omics—a genealogical treasury of words. Scientist 15(7):8–8

    Google Scholar 

  36. 36.

    Ley RE et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102(31):11070–11075

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ley R et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Lin HV et al (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. L. Brennan, ed. PloS one 7(4):e35240

  39. 39.

    Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78(3 Suppl):517S–520S

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Louis P et al (2007) Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102(5):1197–1208

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Louis P et al (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 12(2):304–314

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Mengel E. et al (2017) Changes in inflammatory markers in Estonian pubertal boys with different BMI values and increments: a 3-year follow-up study. Obesity

  43. 43.

    Mizuno TM et al (2017) Negative regulation of hepatic fat mass and obesity associated (Fto) gene expression by insulin. Life Sci 170:50–55

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Ng M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet 384(9945):766–781

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Nguyen TLA et al (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8(1):1–16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    NIH HMP Working Group, TNHW et al (2009) The NIH human microbiome project. Genome Res 19(12):2317–2323

  47. 47.

    Odamaki T et al (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16(1):90

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Org E et al (2015) Genetic and environmental control of host-gut microbiota interactions. Genome Res 25(10):1558–1569

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Perry RJ et al (2016) Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534(7606):213–217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Pryde SE et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217(2):133–139

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Qin J et al (2010) ARTICLES a human gut microbial gene catalogue established by metagenomic sequencing. Nature 464

  52. 52.

    Rahat-Rozenbloom S et al (2014) Evidence for greater production of colonic short chain fatty acids in overweight than lean humans. Int J Obes 38(12):1525–1531

    CAS  Article  Google Scholar 

  53. 53.

    Ríos-Covián D et al (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Semova I et al (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12(3):277–288

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Sonnenburg JL, Bäckhed F (2016) Diet–microbiota interactions as moderators of human metabolism. Nature 535(7610):56–64

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Sonnenburg JL et al (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307(5717):1955–1959

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Thaiss CA et al (2016) Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540(7634):544–551

    CAS  Article  Google Scholar 

  59. 59.

    Threapleton DE et al (2013) Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 347:f6879–f6879

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Tucker LA, Thomas KS (2009) Increasing total fiber intake reduces risk of weight and fat gains in women. J Nutr 139(3):576–581

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Turnbaugh PJ et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

    Article  PubMed  Google Scholar 

  62. 62.

    Turnbaugh PJ et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Turnbaugh PJ et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Vega GL et al (2006) Influence of body fat content and distribution on variation in metabolic risk. J Clin Endocrinol Metab 91(11):4459–4466

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Walker AW et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5(2):220–230

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Weickert MO, Pfeiffer AFH (2008) Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 138(3):439–442

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Wong JMW, Jenkins DJA (2007) Carbohydrate digestibility and metabolic effects. J Nutr 137(11 Suppl):2539S–2546S

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    World Health Organization (2016) WHO | obesity and overweight. WHO

  69. 69.

    Wu GD et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, NY) 334(6052):105–108

    CAS  Article  Google Scholar 

  70. 70.

    Wu GD et al (2016) Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65(1):63–72

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Xu M-Q et al (2015) Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol 21(1):102–111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is grateful to Professor Derek Doherty and Dr. Henry Windle in the MSc. Molecular Medicine course, Trinity College Dublin, for their support during the writing of this review. The author would also like to thank the reviewer for the kind comments that greatly improved this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. C. Davis.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davis, H.C. Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity?. Ir J Med Sci 187, 393–402 (2018). https://doi.org/10.1007/s11845-017-1686-9

Download citation

Keywords

  • Fibre
  • Fibre and health
  • Fibre and obesity
  • Gastrointestinal health
  • Gut health
  • Gut microbiome
  • Gut microbiota
  • Obesity
  • Obesity and gut health
  • Obesity and gut microbiota
  • SCFA
  • SCFA and fibre
  • SCFA and gut health
  • SCFA and obesity
  • Short-chain fatty acids