Irish Journal of Medical Science (1971 -)

, Volume 187, Issue 2, pp 393–402 | Cite as

Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity?

  • H. C. DavisEmail author
Review Article


Recent research suggests that the human gastrointestinal microbiota is greatly involved in yielding, storing and expending energy from the diet; therefore, it may be a further factor in linking diet to obesity. The gut microbial composition is affected by diet throughout the human lifespan, and is highly dynamic and efficient in response to dietary alterations in particular to dietary fibre intake. Short-chained fatty acids (SCFA) are the bi-product of fibre fermentation and have both obesogenic and anti-obesogenic properties. The production of specific forms of SCFAs depends on the microbes available in the gut and the type of fibre ingested. The gut microbiome associated with healthy lean individuals has a higher microbial biodiversity and a greater Bacteroidete to Firmicute ratio compared to the obese individuals associated with microbiome. These gut microbial associations are similar to those seen in individuals with high and low dietary fibre intakes, respectively. Metabolites generated by Bacteroidetes and Firmicutes include the three main SCFA related to obesity, namely butyrate, acetate and propionate. However, neither Bacteroidetes nor Firmicutes is purely causative or purely preventative of obesity. More research is crucial in linking the various types of fibre with particular SCFA production and the microbiome it promotes before suggesting that dietary fibre modulation of the gut microbiome can treat obesity. However, the long-term dietary trend plays the principal role in assembling the diversity and abundance of gut microbes; thus, a sustained diet high in fibre may help prevent obesity by promoting a microbiome associated with a lean phenotype.


Fibre Fibre and health Fibre and obesity Gastrointestinal health Gut health Gut microbiome Gut microbiota Obesity Obesity and gut health Obesity and gut microbiota SCFA SCFA and fibre SCFA and gut health SCFA and obesity Short-chain fatty acids 



The author is grateful to Professor Derek Doherty and Dr. Henry Windle in the MSc. Molecular Medicine course, Trinity College Dublin, for their support during the writing of this review. The author would also like to thank the reviewer for the kind comments that greatly improved this manuscript.

Compliance with ethical standards

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.


  1. 1.
    Adam CL et al (2014) Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats. Nutr Metab 11(1):36CrossRefGoogle Scholar
  2. 2.
    Al-Lahham SH et al (2010) Regulation of adipokine production in human adipose tissue by propionic acid. Eur J Clin Investig 40(5):401–407CrossRefGoogle Scholar
  3. 3.
    Anastasiou CA, Karfopoulou E, Yannakoulia M (2015) Weight regaining: from statistics and behaviors to physiology and metabolism. Metabolism 64(11):1395–1407CrossRefPubMedGoogle Scholar
  4. 4.
    Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Backhed F et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101(44):15718–15723CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Backhed F et al (2005) Host-bacterial mutualism in the human intestine. Science (New York, NY) 307(5717):1915–1920CrossRefGoogle Scholar
  7. 7.
    Bäckhed F et al (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci 104(3):979–984CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bäckhed F et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17(5):690–703CrossRefPubMedGoogle Scholar
  9. 9.
    Baer DJ et al (1997) Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans. J Nutr 127(4):579–586CrossRefPubMedGoogle Scholar
  10. 10.
    Benson AK et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107(44):18933–18938CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Braune J. et al. (2017) IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. J Immunol 1600476Google Scholar
  12. 12.
    Chakraborti CK (2015) New-found link between microbiota and obesity. World J Gastrointest Pathophysiol 6(4):110–119CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chambers ES et al (2015) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64(11):1744–1754 Available at: CrossRefPubMedGoogle Scholar
  14. 14.
    Chu DM et al (2016) The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med 8(1):77CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Collado MC et al (2016) Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 6:23129CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    David LA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563CrossRefPubMedGoogle Scholar
  17. 17.
    De Filippo C et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107(33):14691–14696CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    DeGruttola AK et al (2016) Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 22(5):1137–1150CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    DiBaise JK, Frank DN, Mathur R (2012) Impact of the gut microbiota on the development of obesity: current concepts. Am J Gastroenterol Suppl 1(1):22–27CrossRefGoogle Scholar
  20. 20.
    Duncan SH et al (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73(4):1073–1078CrossRefPubMedGoogle Scholar
  21. 21.
    Eckburg PB et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fernandes J et al (2014) Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 4Google Scholar
  23. 23.
    Finucane MM et al (2014) A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One 9(1):e84689CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gómez-Hernández A et al (2016) Differential role of adipose tissues in obesity and related metabolic and vascular complications. Int J Endocrinol 2016:1–15CrossRefGoogle Scholar
  25. 25.
    Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 6(4):295–308CrossRefGoogle Scholar
  26. 26.
    Hildebrandt MA et al (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137(5):1716–1724.e2CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Human Microbiome Project Consortium, T. (2012a) A framework for human microbiome research. Nature 486Google Scholar
  28. 28.
    Human Microbiome Project Consortium, T. (2012b) Structure, function and diversity of the healthy human microbiome. Nature 486Google Scholar
  29. 29.
    Jonsson A et al (2009) Assessing the effect of interaction between an FTO variant (rs9939609) and physical activity on obesity in 15,925 Swedish and 2,511 Finnish adults. Diabetologia 52(7):1334–1338CrossRefPubMedGoogle Scholar
  30. 30.
    Katzmarzyk PT et al (2005) Metabolic syndrome, obesity, and mortality. Diabetes Care 28(2)Google Scholar
  31. 31.
    Keller M et al (2017) Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metab 6(1):86–100CrossRefPubMedGoogle Scholar
  32. 32.
    Koenig JE et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci 108(Supplement_1):4578–4585CrossRefPubMedGoogle Scholar
  33. 33.
    Kunde S et al (2013) Safety, tolerability, and clinical response after fecal transplantation in children and young adults with ulcerative colitis. J Pediatr Gastroenterol Nutr 56(6):597–601CrossRefPubMedGoogle Scholar
  34. 34.
    Lakshminarayanan B et al (2014) Compositional dynamics of the human intestinal microbiota with aging: implications for health. J Nutr Health Aging 18(9):773–786CrossRefPubMedGoogle Scholar
  35. 35.
    Lederberg J, Mccray AT (2001) ‘Ome sweet ‘omics—a genealogical treasury of words. Scientist 15(7):8–8Google Scholar
  36. 36.
    Ley RE et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102(31):11070–11075CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ley R et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023CrossRefPubMedGoogle Scholar
  38. 38.
    Lin HV et al (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. L. Brennan, ed. PloS one 7(4):e35240Google Scholar
  39. 39.
    Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78(3 Suppl):517S–520SCrossRefPubMedGoogle Scholar
  40. 40.
    Louis P et al (2007) Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102(5):1197–1208CrossRefPubMedGoogle Scholar
  41. 41.
    Louis P et al (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 12(2):304–314CrossRefPubMedGoogle Scholar
  42. 42.
    Mengel E. et al (2017) Changes in inflammatory markers in Estonian pubertal boys with different BMI values and increments: a 3-year follow-up study. ObesityGoogle Scholar
  43. 43.
    Mizuno TM et al (2017) Negative regulation of hepatic fat mass and obesity associated (Fto) gene expression by insulin. Life Sci 170:50–55CrossRefPubMedGoogle Scholar
  44. 44.
    Ng M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet 384(9945):766–781CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nguyen TLA et al (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8(1):1–16CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    NIH HMP Working Group, TNHW et al (2009) The NIH human microbiome project. Genome Res 19(12):2317–2323Google Scholar
  47. 47.
    Odamaki T et al (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16(1):90CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Org E et al (2015) Genetic and environmental control of host-gut microbiota interactions. Genome Res 25(10):1558–1569CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Perry RJ et al (2016) Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534(7606):213–217CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pryde SE et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217(2):133–139CrossRefPubMedGoogle Scholar
  51. 51.
    Qin J et al (2010) ARTICLES a human gut microbial gene catalogue established by metagenomic sequencing. Nature 464Google Scholar
  52. 52.
    Rahat-Rozenbloom S et al (2014) Evidence for greater production of colonic short chain fatty acids in overweight than lean humans. Int J Obes 38(12):1525–1531CrossRefGoogle Scholar
  53. 53.
    Ríos-Covián D et al (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Semova I et al (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12(3):277–288CrossRefPubMedGoogle Scholar
  55. 55.
    Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sonnenburg JL, Bäckhed F (2016) Diet–microbiota interactions as moderators of human metabolism. Nature 535(7610):56–64CrossRefPubMedGoogle Scholar
  57. 57.
    Sonnenburg JL et al (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307(5717):1955–1959CrossRefPubMedGoogle Scholar
  58. 58.
    Thaiss CA et al (2016) Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540(7634):544–551CrossRefGoogle Scholar
  59. 59.
    Threapleton DE et al (2013) Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 347:f6879–f6879CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tucker LA, Thomas KS (2009) Increasing total fiber intake reduces risk of weight and fat gains in women. J Nutr 139(3):576–581CrossRefPubMedGoogle Scholar
  61. 61.
    Turnbaugh PJ et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031CrossRefPubMedGoogle Scholar
  62. 62.
    Turnbaugh PJ et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Turnbaugh PJ et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484CrossRefPubMedGoogle Scholar
  64. 64.
    Vega GL et al (2006) Influence of body fat content and distribution on variation in metabolic risk. J Clin Endocrinol Metab 91(11):4459–4466CrossRefPubMedGoogle Scholar
  65. 65.
    Walker AW et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5(2):220–230CrossRefPubMedGoogle Scholar
  66. 66.
    Weickert MO, Pfeiffer AFH (2008) Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 138(3):439–442CrossRefPubMedGoogle Scholar
  67. 67.
    Wong JMW, Jenkins DJA (2007) Carbohydrate digestibility and metabolic effects. J Nutr 137(11 Suppl):2539S–2546SCrossRefPubMedGoogle Scholar
  68. 68.
    World Health Organization (2016) WHO | obesity and overweight. WHOGoogle Scholar
  69. 69.
    Wu GD et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, NY) 334(6052):105–108CrossRefGoogle Scholar
  70. 70.
    Wu GD et al (2016) Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65(1):63–72CrossRefPubMedGoogle Scholar
  71. 71.
    Xu M-Q et al (2015) Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol 21(1):102–111CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Royal Academy of Medicine in Ireland 2017

Authors and Affiliations

  1. 1.Trinity College Dublin (TCD)Dublin 2Ireland

Personalised recommendations