Skip to main content

Advertisement

Log in

miR-210 expression in PBMCs from patients with systemic lupus erythematosus and rheumatoid arthritis

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

In hypoxic conditions, miRNA-210 plays an important role in regulating the expression of hypoxia-inducing factor-1α (HIF-1α) and the differentiation of T helper 17 (Th17) cells, and this may be involved in the development and function of the immune system.

Aims

This study was to investigate the miR-210 expression levels in peripheral blood mononuclear cells (PBMCs) from patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) and its association with the clinical and laboratory features of both diseases.

Methods

Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to detect miR-210 expression levels in PBMCs from 35 patients with SLE, 38 patients with RA, and 35 healthy controls.

Results

Compared with the healthy controls, the miR-210 expression levels were significantly increased in patients with SLE (P = 0.001) and there was increased significantly expression of miR-210 in SLE with pleuritis (Z = −2.345, P = 0.019) and anti-SSB/La-positive group (Z = −2.076, P = 0.038). However, we have not found the significant correlation between the miR-210 levels and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score (r s = 0.091, P = 0.602). Although, no significant difference between miR-210 levels in RA patients and those in healthy controls was found (Z = −1.226, P = 0. 220). There was a significant decreased expression of miR-210 in active RA patients than inactive RA patients (Z = −4.011, P < 0.001).

Conclusions

The dysregulation of miR-210 levels in SLE and RA patients suggests that miR-210 might play an important role in the pathogenesis of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perera RJ, Ray A (2007) MicroRNAs in the search for understanding human diseases. BioDrugs 21(2):97–104. doi:10.2165/00063030-200721020-00004

    Article  CAS  PubMed  Google Scholar 

  2. Ambros V (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113(6):673–676

    Article  CAS  PubMed  Google Scholar 

  3. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi:10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  4. Leung AK, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40(2):205–215. doi:10.1016/j.molcel.2010.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chan YC, Banerjee J, Choi SY et al (2012) miR-210: the master hypoxamir. Microcirculation 19(3):215–223. doi:10.1111/j.1549-8719.2011.00154.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Camps C, Buffa FM, Colella S et al (2008) hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14(5):1340–1348. doi:10.1158/1078-0432.CCR-07-1755

    Article  CAS  PubMed  Google Scholar 

  7. Giannakakis A, Sandaltzopoulos R, Greshock J et al (2008) miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 7(2):255–264

    Article  CAS  PubMed  Google Scholar 

  8. Huang X, Le QT, Giaccia AJ (2010) MiR-210--micromanager of the hypoxia pathway. Trends Mol Med 16(5):230–237. doi:10.1016/j.molmed.2010.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang H, Flach H, Onizawa M et al (2014) Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat Immunol 15(4):393–401. doi:10.1038/ni.2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358(9):929–939. doi:10.1056/NEJMra071297

    Article  CAS  PubMed  Google Scholar 

  11. Wong JB, Ramey DR, Singh G (2001) Long-term morbidity, mortality, and economics of rheumatoid arthritis. Arthritis Rheum 44(12):2746–2749

    Article  CAS  PubMed  Google Scholar 

  12. Lajas C, Abasolo L, Bellajdel B et al (2003) Costs and predictors of costs in rheumatoid arthritis: a prevalence-based study. Athritis Rheum 49(1):64–70. doi:10.1002/art.10905

    Article  Google Scholar 

  13. Alunno A, Bartoloni E, Bistoni O et al (2012) Balance between regulatory T and Th17 cells in systemic lupus erythematosus: the old and the new. Clin Dev Immunol 2012:823085. doi:10.1155/2012/823085

    Article  PubMed  PubMed Central  Google Scholar 

  14. Annunziato F, Cosmi L, Liotta F et al (2009) Type 17 T helper cells-origins, features and possible roles in rheumatic disease. Nat Rev Rheumatol 5(6):325–331. doi:10.1038/nrrheum.2009.80

    Article  CAS  PubMed  Google Scholar 

  15. Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364(7):656–665. doi:10.1056/NEJMra0910283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dang EV, Barbi J, Yang HY et al (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146(5):772–784. doi:10.1016/j.cell.2011.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725. doi:10.1002/1529-0131(199709)40:9&lt;1725::AID-ART29&gt;3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  18. Silman AJ (1988) The 1987 revised American Rheumatism Association criteria for rheumatoid arthritis. Br J Rheumatol 27(5):341–343

    Article  CAS  PubMed  Google Scholar 

  19. Gladman DD, Ibañez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index. 2000. J Rheumatol 29(2):288–291

    PubMed  Google Scholar 

  20. Eis PS, TamW SL et al (2005) Accumulation of miR- 155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102(10):3627–3632. doi:10.1073/pnas.0500613102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fulci V, Chiaretti S, Goldoni M et al (2007) Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109(11):4944–4951. doi:10.1182/blood-2006-12-062398

    Article  CAS  PubMed  Google Scholar 

  22. Turunen S, Koivula MK, Melkko J et al (2013) Different amounts of protein-bound citrulline and homocitrulline in foot joint tissues of a patient with anti-citrullinated protein antibody positive erosive rheumatoid arthritis. J Transl Med 11:224. doi:10.1186/1479-5876-11-224

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rodriguez A, Vigorito E, Clare S et al (2007) Requirement of bic/microRNA- 155 for normal immune function. Science 316(5824):608–611. doi:10.1126/science.1139253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Labbaye C, Spinello I, Quaranta MT et al (2008) A three-step pathway comprising PLZF/miR146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 10(7):788–801. doi:10.1038/ncb1741

    Article  CAS  PubMed  Google Scholar 

  25. Zhou M, Li LH, Peng H et al (2014) Decreased ITGAM and FcgammaRIIIA mRNA expression levels in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Med 14(3):269–274. doi:10.1007/s10238-013-0240-y

    Article  CAS  PubMed  Google Scholar 

  26. Wong CK, Lit LC, Tam LS et al (2008) Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol 127(3):385–393. doi:10.1016/j.clim.2008.01.019

    Article  CAS  PubMed  Google Scholar 

  27. Zhao XF, Pan HF, Yuan H et al (2010) Increased serum interleukin 17 in patients with systemic lupus erythematosus. Mol Biol Rep 37(1):81–85. doi:10.1007/s11033-009-9533-3

    Article  PubMed  Google Scholar 

  28. Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007(407):cm8. doi:10.1126/stke.4072007cm8

    Article  PubMed  Google Scholar 

  29. Taganov KD, Boldin MP, Baltimore D MicroRNAs and immunity: tiny players in a big field. Immunity 26(2):133–137. doi:10.1016/j.immuni.2007.02.005

  30. Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136(1):26–36. doi:10.1016/j.cell.2008.12.027

    Article  CAS  PubMed  Google Scholar 

  31. O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11(3):163–175. doi:10.1038/nri2957

    Article  PubMed  Google Scholar 

  32. Qi J, Qiao Y, Wang P et al (2012) microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-kappaB1 in murine macrophages. FEBS Lett 586(8):1201–1207. doi:10.1016/j.febslet.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  33. Zhang D, Cao X, Li J et al (2015) MiR-210 inhibits NF-kappaB signaling pathway by targeting DR6 in osteoarthritis. Sci Rep 5:12775. doi:10.1038/srep12775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qiu J, Zhou XY, Zhou XG et al (2013) Neuroprotective effects of microRNA-210 on hypoxic-ischemic encephalopathy. Biomed Res Int 2013:350419. doi:10.1155/2013/350419

    PubMed  PubMed Central  Google Scholar 

  35. Zhao L, Nocturne G, Haskett S et al (2017) Clinical relevance of RORγ positive and negative subsets of CD161+CD4+ T cells in primary Sjögren’s syndrome. Rheumatology (Oxford) 56(2):303–312. doi:10.1093/rheumatology/kew360

    Article  Google Scholar 

  36. Osipova J, Fischer DC, Dangwal S et al (2014) Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study. J Clin Endocrinol Metab 99(9):E1661–E1665. doi:10.1210/jc.2013-3868

    Article  CAS  PubMed  Google Scholar 

  37. Yang D, Wang WZ, Zhang XM et al (2014) MicroRNA expression aberration in Chinese patients with relapsing remitting multiple sclerosis. J Mol Neurosci 52(1):131–137. doi:10.1007/s12031-013-0138-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thank you to the First Affiliated Hospital of Anhui Medical University and Anhui Provincial Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.-Q. Ye.

Ethics declarations

Funding

This study was supported by the National Natural Science Foundation of China (81172764).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Novelty statement

The expression of miR-210 was detected by RT-qPCR in these patients. This research is the first study to investigate the miR-210 expression levels in peripheral blood mononuclear cells (PBMCs) from patients with SLE and RA. And the results can provide an evidence for the further study of its function in the pathogenesis of SLE and RA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Chen, SS., Li, J. et al. miR-210 expression in PBMCs from patients with systemic lupus erythematosus and rheumatoid arthritis. Ir J Med Sci 187, 243–249 (2018). https://doi.org/10.1007/s11845-017-1634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-017-1634-8

Keywords

Navigation