Skip to main content

Advertisement

Log in

Risk factors for hospital-acquired bloodstream infections caused by extended-spectrum β-lactamase Klebsiella pneumoniae among cancer patients

  • Brief Report
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

Incidence of infection due to extended-spectrum β-lactamase producing Klebsiella pneumoniae (ESBL-KP) has increased rapidly in recent years. However, its prevalence in cancer patients is seldom reported.

Aims

This study was designed to identify the risk factors for bloodstream infections (BSIs) with ESBL-KP, and to understand its susceptibility among cancer patients on antibiotics.

Methods

We conducted a retrospective study with a total of 118 cancer patients between 2009 and 2011 with BSIs, among which 88 were infected with non-ESBL-KP and 30 with ESBL-KP. Patterns of susceptibility, clinical characteristics and mortality were investigated. Multivariate logistic regression model was used to unveil independent risk factors.

Results

On multivariate analysis, length of stay (LOS) (p = 0.025), and prior exposure to cephalosporins (p = 0.006), fluoroquinolones (p = 0.011), macrolides (p = 0.007) and aminoglycosides (p = 0.008) were independent risk factors for BSIs of ESBL-KP. For mortality, there was no significant difference between ESBL-KP and non-ESBL-KP groups (p = 0.431). Moreover, compared with non-ESBL-KP, ESBL-KP displayed reduced sensitivity to aminoglycosides (p < 0.001, except amikacin), fluoroquinolones (p < 0.001), piperacillin–tazobactam (p = 0.005) and trimethoprim–sulfamethoxazole (p < 0.001), respectively.

Conclusions

ESBL-KP exhibited less susceptibility to various non-β-lactamase antibiotics, and infections due to these organisms were related to LOS and preexisting use of antibiotics. Thus, judicious use of all antibiotics should be underscored to reduce the infections caused by ESBL-KP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Knothe H, Shah P, Krcmery V et al (1983) Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 11:315–317

    Article  CAS  PubMed  Google Scholar 

  2. Villegas MV, Blanco MG, Sifuentes-Osornio J et al (2011) Increasing prevalence of extended-spectrum-β-lactamase among Gram-negative bacilli in Latin America––2008 update from the study for monitoring antimicrobial resistance trends (SMART). Braz J Infect Dis 15:34–39

    CAS  PubMed  Google Scholar 

  3. Hawser SP, Bouchillon SK, Hoban DJ et al (2009) Emergence of high levels of extended-spectrum-β-lactamase-producing gram-negative bacilli in the Asia–Pacific region: data from the study for monitoring antimicrobial resistance trends (SMART) program, 2007. Antimicrob Agents Chemother 53:3280–3284. doi:10.1128/AAC.00426-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hawser SP, Bouchillon SK, Hoban DJ et al (2010) Incidence and antimicrobial susceptibility of Escherichia coli and Klebsiella pneumoniae with extended-spectrum β-lactamases in community- and hospital-associated intra-abdominal infections in Europe: results of the 2008 study for monitoring antimicrobial resistance trends (SMART). Antimicrob Agents Chemother 54:3043–3046. doi:10.1128/aac.00265-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hoban DJ, Bouchillon SK, Hawser SP et al (2010) Susceptibility of gram-negative pathogens isolated from patients with complicated intra-abdominal infections in the US, 2007–2008: results of the study for monitoring antimicrobial resistance trends (SMART). Antimicrob Agents Chemother 54:3031–3034. doi:10.1128/aac.01808-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jung Y, Lee MJ, Sin HY et al (2012) Differences in characteristics between healthcare-associated and community-acquired infection in community-onset Klebsiella pneumoniae bloodstream infection in Korea. BMC Infect Dis 12:239. doi:10.1186/1471-2334-12-239

    Article  PubMed Central  PubMed  Google Scholar 

  7. Wu HS, Wang FD, Tseng CP et al (2012) Characteristics of healthcare-associated and community-acquired Klebsiella pneumoniae bacteremia in Taiwan. J Infect 64:162–168. doi:10.1016/j.jinf.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  8. Yinnon AM, Butnaru A, Raveh D et al (1996) Klebsiella bacteraemia: community versus nosocomial infection. QJM 89:933–941

    Article  CAS  PubMed  Google Scholar 

  9. Paterson DL, Ko WC, Von Gottberg A et al (2004) Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum β-lactamases. Clin Infect Dis 39:31–37. doi:10.1086/420816

    Article  CAS  PubMed  Google Scholar 

  10. Superti SV, Augusti G, Zavascki AP (2009) Risk factors for and mortality of extended-spectrum-β-lactamase-producing Klebsiella pneumoniae and Escherichia coli nosocomial bloodstream infections. Rev Inst Med Trop Sao Paulo 51:211–216

    Article  PubMed  Google Scholar 

  11. Nasa P, Juneja D, Singh O et al (2012) An observational study on bloodstream extended-spectrum β-lactamase infection in critical care unit: incidence, risk factors and its impact on outcome. Eur J Intern Med 23:192–195. doi:10.1016/j.ejim.2011.06.016

    Article  PubMed  Google Scholar 

  12. Stewardson A, Fankhauser C, De Angelis G et al (2013) Burden of bloodstream infection caused by extended-spectrum β-lactamase-producing enterobacteriaceae determined using multistate modeling at a Swiss University hospital and a nationwide predictive model. Infect Control Hosp Epidemiol 34:133–143. doi:10.1086/669086

    Article  PubMed  Google Scholar 

  13. Webster DP, Young BC, Morton R et al (2011) Impact of a clonal outbreak of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in the development and evolution of bloodstream infections by K. pneumoniae and Escherichia coli: an 11 year experience in Oxfordshire. UK. J Antimicrob Chemother 66:2126–2135. doi:10.1093/jac/dkr246

    Article  CAS  Google Scholar 

  14. Sanchez GV, Master RN, Clark RB et al (2013) Klebsiella pneumoniae antimicrobial drug resistance, US, 1998–2010. Emerg Infect Dis 19:133–136. doi:10.3201/eid1901.120310

    Article  PubMed Central  PubMed  Google Scholar 

  15. Rosenthal VD, Bijie H, Maki DG et al (2012) International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004–2009. Am J Infect Control 40:396–407. doi:10.1016/j.ajic.2011.05.020

    Article  PubMed  Google Scholar 

  16. Chopra T, Marchaim D, Veltman J et al (2012) Impact of cefepime therapy on mortality among patients with bloodstream infections caused by extended-spectrum-β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother 56:3936–3942. doi:10.1128/aac.05419-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Quirante OF, Cerrato SG, Pardos SL (2011) Risk factors for bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Braz J Infect Dis 15:370–376

    Article  PubMed  Google Scholar 

  18. Passerini R, Ghezzi T, Sandri M et al (2011) Ten-year surveillance of nosocomial bloodstream infections: trends of aetiology and antimicrobial resistance in a comprehensive cancer centre. Ecancermedicalscience 5:p191. doi:10.3332/ecancer.2011.191

    Google Scholar 

  19. Clinical and Laboratory Standards Institute (2009) Performance standards for antimicrobial susceptibility testing; Nineteenth informational supplement. National Committee for Clinical Laboratory Standards, Wayne

    Google Scholar 

  20. Hussein K, Raz-Pasteur A, Finkelstein R et al (2013) Impact of carbapenem resistance on the outcome of patients’ hospital-acquired bacteraemia caused by Klebsiella pneumoniae. J Hosp Infect 83:307–313. doi:10.1016/j.jhin.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  21. Szilagyi E, Fuzi M, Borocz K et al (2009) Risk factors and outcomes for bloodstream infections with extended-spectrum β -lactamase-producing Klebsiella pneumoniae; Findings of the nosocomial surveillance system in Hungary. Acta Microbiol Immunol Hung 56:251–262. doi:10.1556/AMicr.56.2009.3.5

    Article  PubMed  Google Scholar 

  22. Silva N, Oliveira M, Bandeira AC et al (2006) Risk factors for infection by extended-spectrum β-lactamase producing Klebsiella pneumoniae in a tertiary hospital in Salvador, Brazil. Braz J Infect Dis 10:191–193

    Article  PubMed  Google Scholar 

  23. Muro S, Garza-Gonzalez E, Camacho-Ortiz A et al (2012) Risk factors associated with extended-spectrum β-lactamase-producing Enterobacteriaceae nosocomial bloodstream infections in a tertiary care hospital: a clinical and molecular analysis. Chemotherapy 58:217–224. doi:10.1159/000339483

    Article  CAS  PubMed  Google Scholar 

  24. Du B, Long Y, Liu H et al (2002) Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome. Intensive Care Med 28:1718–1723. doi:10.1007/s00134-002-1521-1

    Article  PubMed  Google Scholar 

  25. Fernandez-Canigia L, Dowzicky MJ (2012) Susceptibility of important Gram-negative pathogens to tigecycline and other antibiotics in Latin America between 2004 and 2010. Ann Clin Microbiol Antimicrob. 11:29. doi:10.1186/1476-0711-11-29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Serefhanoglu K, Turan H, Timurkaynak FE et al (2009) Bloodstream infections caused by ESBL-producing E. coli and K. pneumoniae: risk factors for multidrug-resistance. Braz J Infect Dis 13:403–407

    Article  PubMed  Google Scholar 

  27. Yu WL, Jones RN, Hollis RJ et al (2002) Molecular epidemiology of extended-spectrum β-lactamase-producing, fluoroquinolone-resistant isolates of Klebsiella pneumoniae in Taiwan. J Clin Microbiol 40:4666–4669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Park SY, Kang CI, Joo EJ et al (2012) Risk factors for multidrug resistance in nosocomial bacteremia caused by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Microb Drug Resist 18:518–524. doi:10.1089/mdr 2012.0067

    Article  CAS  PubMed  Google Scholar 

  29. Oliveira AL, de Souza M, Carvalho-Dias VM et al (2007) Epidemiology of bacteremia and factors associated with multi-drug-resistant gram-negative bacteremia in hematopoietic stem cell transplant recipients. Bone Marrow Transpl 39:775–781. doi:10.1038/sj.bmt.1705677

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Chenggang Li for the comments of language on the manuscript. This work was supported by grants from the National Nature Science Foundation of China (81302250, 81101745), the National High Technology Research and Development Program (‘863’ Program) of China (2011AA02A111), the Tianjin Municipal Science and Technology Commission (13JCQNJC10300), and the Tianjin Health Bureau of Science and Technology Funds (2012KZ073).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Li or P. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Chen, Y., Zhang, W. et al. Risk factors for hospital-acquired bloodstream infections caused by extended-spectrum β-lactamase Klebsiella pneumoniae among cancer patients. Ir J Med Sci 183, 463–469 (2014). https://doi.org/10.1007/s11845-013-1043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-013-1043-6

Keywords

Navigation