Irish Journal of Medical Science

, Volume 183, Issue 2, pp 259–264 | Cite as

Promoter hypermethylation-mediated down-regulation of RUNX3 gene in human brain tumors

  • C. B. AvciEmail author
  • Y. Dodurga
  • S. Y. Susluer
  • Z. O. D. Sıgva
  • M. Yucebas
  • H. O. Caglar
  • T. Akalin
  • T. Dalbasti
  • N. Oktar
  • C. Gunduz
Original Article



The Runx family proteins, including RUNX3, are tissue-restricted transcription factors and play role in neuronal development and tumorigenesis. RUNX3 has an important role in glioblastoma (GBM) tumorigenesis because of its promoter hypermethylation.


We aimed to evaluate the methylation-mediated expression regulation of RUNX3 gene in brain tumors.

Patients and methods

Cases of meningiomas WHO grade III (3), anaplastic astrocytomas (3), diffuse astrocytoma (3), and GBM (12) were recruited into this study. Real-time quantitative PCR was performed for analyses of DNA promoter methylation and analyses of methylation-mediated expression status of RUNX3 gene was performed by real-time quantitative RT-PCR.


There was no significant difference between methylated and unmethylated quantitative ratio of RUNX3 gene promoter region and also no significant difference in relative ratio of RUNX3 gene expression in brain tumor groups. Methylated and unmethylated ratio in anaplastic astrocytoma, diffuse astrocytoma, GBM, meningioma (WHO grade III) and in all groups were; 1.44, 1.09, 1.51, 1.52 and 1.43, respectively. One allele was found methylated necessarily. No methylation was detected in one case of GBM group and one case of anaplastic astrocytoma group. There was no unmethylated promoter in one of the GBM cases. There were significant differences between relative ratio of RUNX3 gene expression and methylated/unmethylated ratio rates for all cases (p = 0.001) and GBM groups (p = 0.041).


This study overemphasized the RUNX3 gene importance in brain tumors, due to the existence of at least one methylated allele.


Human brain tumors RUNX3 DNA methylation Gene expression 



This study is supported by Ege University Medical Faculty Research Project Subcommittee (Grant number: T-00033 APAK).

Conflict of interest

The author declare that there is no conflict of interest.


  1. 1.
    Hill CI, Nixon CS, Ruehmeier JL, Wolf LM (2002) Brain tumors. Phys Ther 82(5):496–502PubMedGoogle Scholar
  2. 2.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK et al (2007) The 2007 WHO classiffication of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi: 10.1007/s00401-007-0243-4 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Chuang LS, Ito K, Ito Y (2013) RUNX family: regulation and diversification of roles through interacting proteins. Int J Cancer 132(6):1260–1271. doi: 10.1002/ijc.27964 PubMedCrossRefGoogle Scholar
  4. 4.
    Kamachi Y, Ogawa E, Asano M et al (1990) Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomavirus enhancer. J Virol 64(10):4808–4819PubMedCentralPubMedGoogle Scholar
  5. 5.
    Okuda T, van Deursen J, Hiebert SW et al (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84(2):321–330. doi: 10.1016/S0092-8674(00)80986-1 PubMedCrossRefGoogle Scholar
  6. 6.
    Wang Q, Stacy T, Binder M et al (1996) Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 93(8):3444–3449PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    North T, Gu TL, Stacy T et al (1999) Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126(11):2563–2575PubMedGoogle Scholar
  8. 8.
    Ducy P, Zhang R, Geoffroy V et al (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754. doi: 10.1016/S0092-8674(00)80257-3 PubMedCrossRefGoogle Scholar
  9. 9.
    Komori T, Yagi H, Nomura S et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764. doi: 10.1016/S0092-8674(00)80258-5 PubMedCrossRefGoogle Scholar
  10. 10.
    Li QL, Ito K, Sakakura C et al (2002) Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109(1):113–124. doi: 10.1016/S0092-8674(02)00690-6 PubMedCrossRefGoogle Scholar
  11. 11.
    Inoue K, Ozaki S, Shiga T et al (2002) Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat Neurosci 5(10):946–954. doi: 10.1038/nn925 PubMedCrossRefGoogle Scholar
  12. 12.
    Lam K, Zhang DE (2012) RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front Biosci 17:1120–1139. doi: 3977 CrossRefGoogle Scholar
  13. 13.
    Mangan JK, Speck NA (2011) RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making. Crit Rev Oncog 16(1–2):77–91PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Dulak AM, Schumacher SE, van Lieshout J et al (2012) Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Res 72(17):4383–4393. doi: 10.1158/0008-5472.CAN-11-3893 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Vladimirova V, Waha A, Lückerath K et al (2008) Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. J Neurosci Res 86(11):2450–2461. doi: 10.1002/jnr.21686 PubMedCrossRefGoogle Scholar
  16. 16.
    Nevadunsky NS, Barbieri JS, Kwong J et al (2009) RUNX3 protein is overexpressed in human epithelial ovarian cancer. Gynecol Oncol 112(2):325–330. doi: 10.1016/j.ygyno.2008.09.006 PubMedCrossRefGoogle Scholar
  17. 17.
    Chuang LS, Ito Y (2010) RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene 29(18):2605–2615. doi: 10.1038/onc.2010.88 PubMedCrossRefGoogle Scholar
  18. 18.
    Miyagawa K, Sakakura C, Nakashima S et al (2006) Down-regulation of RUNX1, RUNX3 and CBFbeta in hepatocellular carcinomas in an early stage of hepatocarcinogenesis. Anticancer Res 26(5B):3633–3643PubMedGoogle Scholar
  19. 19.
    Sakakura C, Hagiwara A, Miyagawa K et al (2005) Frequent downregulation of the runt domain transcription factors RUNX1, RUNX3 and their cofactor CBFB in gastric cancer. Int J Cancer 113(2):221–228. doi: 10.1002/ijc.20551 PubMedCrossRefGoogle Scholar
  20. 20.
    Chen W, Gao N, Shen Y et al (2010) Hypermethylation downregulates Runx3 gene expression and its restoration suppresses gastric epithelial cell growth by inducing p27 and caspase3 in human gastric cancer. J Gastroenterol Hepatol 25(4):823–831. doi: 10.1111/j.1440-1746.2009.06191.x PubMedCrossRefGoogle Scholar
  21. 21.
    Li QL, Kim HR, Kim WJ et al (2004) Transcriptional silencing of the RUNX3 gene by CpG hypermethylation is associated with lung cancer. Biochem Biophys Res Commun 314(1):223–228. doi: S0006291X03026706 PubMedCrossRefGoogle Scholar
  22. 22.
    Mueller W, Nutt CL, Ehrich M et al (2007) Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene 26(4):583–593. doi: 10.1038/sj.onc.1209805 PubMedCrossRefGoogle Scholar
  23. 23.
    Commins DL, Atkinson RD, Burnett ME (2007) Review of meningioma histopathology. Neurosurg Focus 23(4):E3. doi: 10.3171/FOC-07/10/E3 PubMedCrossRefGoogle Scholar
  24. 24.
    Li J, Kleeff J, Guweidhi A et al (2004) RUNX3 expression in primary and metastatic pancreatic cancer. J Clin Pathol 57(3):294–299. doi: 10.1136/jcp.2003.013011 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Waki T, Tamura G, Sato M et al (2003) Promoter methylation status of DAP-kinase and RUNX3 genes in neoplastic and non-neoplastic gastric epithelia. Cancer Sci 94(4):360–364. doi: 10.1111/j.1349-7006.2003.tb01447.x PubMedCrossRefGoogle Scholar
  26. 26.
    Lee YM (2011) Control of RUNX3 by histone methyltransferases. J Cell Biochem 112(2):394–400. doi: 10.1002/jcb.22969 PubMedCrossRefGoogle Scholar
  27. 27.
    Lee SH, Kim J, Kim WH et al (2009) Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 28(2):184–194. doi: 10.1038/onc.2008.377 PubMedCrossRefGoogle Scholar
  28. 28.
    Kim WJ, Kim EJ, Jeong P et al (2005) RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res 65(20):9347–9354. doi: 10.1158/0008-5472.CAN-05-1647 PubMedCrossRefGoogle Scholar
  29. 29.
    Lau QC, Raja E, Salto-Tellez M et al (2006) RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res 66(13):6512–6520. doi: 10.1158/0008-5472.CAN-06-0369 PubMedCrossRefGoogle Scholar
  30. 30.
    Birnbaum DJ, Adélaïde J, Mamessier E et al (2011) Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 50(6):456–465. doi: 10.1002/gcc.20870 PubMedCrossRefGoogle Scholar
  31. 31.
    Moley JF, Brother MB, Fong CT et al (1992) Consistent association of 1p loss of heterozygosity with pheochromocytomas from patients with multiple endocrine neoplasia type 2 syndromes. Cancer Res 52(4):770–774PubMedGoogle Scholar
  32. 32.
    Bièche I, Champème MH, Matifas F et al (1993) Two distinct regions involved in 1p deletion in human primary breast cancer. Cancer Res 53(9):1990–1994PubMedGoogle Scholar
  33. 33.
    Brodeur GM, Green AA, Hayes FA et al (1981) Cytogenetic features of human neuroblastomas and cell lines. Cancer Res 41(11 Pt 1):4678–4686PubMedGoogle Scholar
  34. 34.
    Ishino S, Hashimoto N, Fushiki S et al (1998) Loss of material from chromosome arm 1p during malignant progression of meningioma revealed by fluorescent in situ hybridization. Cancer 83(2):360–366PubMedCrossRefGoogle Scholar
  35. 35.
    Bello MJ, Leone PE, Nebreda P et al (1995) Allelic status of chromosome 1 in neoplasms of the nervous system. Cancer Genet Cytogenet 83(2):160–164. doi: 016546089500064V PubMedCrossRefGoogle Scholar
  36. 36.
    Ichimura K, Vogazianou AP, Liu L et al (2008) 1p36 is a preferential target of chromosome 1 deletions in astrocytic tumours and homozygously deleted in a subset of glioblastomas. Oncogene 27(14):2097–2108. doi: 10.1038/sj.onc.1210848 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Barbashina V, Salazar P, Holland EC et al (2005) Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res 11(3):1119–1128. doi: 11/3/1119 PubMedGoogle Scholar

Copyright information

© Royal Academy of Medicine in Ireland 2013

Authors and Affiliations

  • C. B. Avci
    • 1
    Email author
  • Y. Dodurga
    • 5
  • S. Y. Susluer
    • 1
  • Z. O. D. Sıgva
    • 1
  • M. Yucebas
    • 1
  • H. O. Caglar
    • 2
  • T. Akalin
    • 3
  • T. Dalbasti
    • 4
  • N. Oktar
    • 4
  • C. Gunduz
    • 1
  1. 1.Department of Medical BiologyEge University Medical FacultyBornovaTurkey
  2. 2.Department of Stem Cell, Health Science InstituteEge UniversityBornovaTurkey
  3. 3.Department of PathologyEge University Medical FacultyBornovaTurkey
  4. 4.Department of NeurosurgeryEge University Medical FacultyBornovaTurkey
  5. 5.Department of Medical Biology, School of MedicinePamukkale UniversityDenizliTurkey

Personalised recommendations