Skip to main content

Advertisement

Log in

Aberrant protein structure and diseases of the brain

  • Review Article
  • Published:
Irish Journal of Medical Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Extracellular fibrous amyloid deposits or intracellular inclusion bodies containing abnormal protein aggregates are pathological hallmarks of several neurodegenerative disorders and it has been hotly debated whether these aberrant protein structures merely occur as a consequence of disease or actually participate in a pathogenic cascade which culminates in neural dysfunction and death. Here, we review the role of aberrant protein structure in the two most common neurodegenerative disorders: Alzheimer’s disease and Parkinson’s disease and in two rare familial dementias, familial British dementia and familial Danish dementia. We also discuss possible mechanisms by which aberrant protein structures may mediate disease and the therapeutic opportunities this knowledge offers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Westermark P, Benson MD, Buxbaum JN et al (2007) A primer of amyloid nomenclature. Amyloid 14:179–183

    Article  CAS  PubMed  Google Scholar 

  2. Glenner GG (1980) Amyloid deposits and amyloidosis: the beta-fibrilloses (second of two parts). N Engl J Med 302:1333–1343

    Article  CAS  PubMed  Google Scholar 

  3. Pepys MB (2006) Amyloidosis. Annu Rev Med 57:223–241

    Article  CAS  PubMed  Google Scholar 

  4. Bennhold H (1922) Eine spezifische amyloid-Färbung mit Kongorot. Münch Med Wochenschr 33:1537–1541

    Google Scholar 

  5. Puchtler H, Sweat F, Levine M (1962) On the binding of Congo red by amyloid. J Histochem Cytochem 10:355

    CAS  Google Scholar 

  6. Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130:88–98

    Article  CAS  PubMed  Google Scholar 

  7. Cohen AS, Calkins E, Levene CI (1959) Studies on experimental amyloidosis: I. Analysis of histology and staining reactions of casein-induced amyloidosis in the rabbit. Am J Pathol 35:971–989

    CAS  PubMed  Google Scholar 

  8. Eanes ED, Glenner GG (1968) X-ray diffraction studies on amyloid filaments. J Histochem Cytochem 16:673–677

    CAS  PubMed  Google Scholar 

  9. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739

    Article  CAS  PubMed  Google Scholar 

  10. Fandrich M (2007) On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell Mol Life Sci 64:2066–2078

    Article  CAS  PubMed  Google Scholar 

  11. Zhang-Nunes SX, Maat-Schieman ML, van Duinen SG et al (2006) The cerebral beta-amyloid angiopathies: hereditary and sporadic. Brain Pathol 16:30–39

    Article  CAS  PubMed  Google Scholar 

  12. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  13. Jahn TR, Radford SE (2005) The Yin and Yang of protein folding. FEBS J 272:5962–5970

    Article  CAS  PubMed  Google Scholar 

  14. Dobson CM (2001) The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 356:133–145

    Article  CAS  PubMed  Google Scholar 

  15. Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904

    Article  CAS  PubMed  Google Scholar 

  16. Ferri CP, Prince M, Brayne C et al (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117

    Article  PubMed  Google Scholar 

  17. Wisniewski HM, Bancher C, Barcikowska M, Wen GY, Currie J (1989) Spectrum of morphological appearance of amyloid deposits in Alzheimer’s disease. Acta Neuropathol 78:337–347

    Article  CAS  PubMed  Google Scholar 

  18. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  PubMed  Google Scholar 

  19. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    CAS  PubMed  Google Scholar 

  20. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  21. Shahani N, Brandt R (2002) Functions and malfunctions of the tau proteins. Cell Mol Life Sci 59:1668–1680

    Article  CAS  PubMed  Google Scholar 

  22. Kenessey A, Yen SH (1993) The extent of phosphorylation of fetal tau is comparable to that of PHF-tau from Alzheimer paired helical filaments. Brain Res 629:40–46

    Article  CAS  PubMed  Google Scholar 

  23. Walsh DM, Selkoe DJ (2007) A beta oligomers—a decade of discovery. J Neurochem 101:1172–1184

    Article  CAS  PubMed  Google Scholar 

  24. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  25. Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301 l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495

    Article  CAS  PubMed  Google Scholar 

  26. Plant GT, Revesz T, Barnard RO, Harding AE, Gautier-Smith PC (1990) Familial cerebral amyloid angiopathy with nonneuritic amyloid plaque formation. Brain 113(Pt 3):721–747

    Article  PubMed  Google Scholar 

  27. Holton JL, Lashley T, Ghiso J et al (2002) Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-beta. J Neuropathol Exp Neurol 61:254–267

    CAS  PubMed  Google Scholar 

  28. Vidal R, Frangione B, Rostagno A et al (1999) A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 399:776–781

    Article  CAS  PubMed  Google Scholar 

  29. Vidal R, Revesz T, Rostagno A et al (2000) A decamer duplication in the 3’ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci USA 97:4920–4925

    Article  CAS  PubMed  Google Scholar 

  30. El-Agnaf OM, Nagala S, Patel BP, Austen BM (2001) Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol 310:157–168

    Article  CAS  PubMed  Google Scholar 

  31. Gibson G, Gunasekera N, Lee M et al (2004) Oligomerization and neurotoxicity of the amyloid ADan peptide implicated in familial Danish dementia. J Neurochem 88:281–290

    Article  CAS  PubMed  Google Scholar 

  32. Vidal R, Barbeito AG, Miravalle L, Ghetti B (2009) Cerebral amyloid angiopathy and parenchymal amyloid deposition in transgenic mice expressing the Danish mutant form of human BRI2. Brain Pathol 19:58–68

    Article  CAS  PubMed  Google Scholar 

  33. Coomaraswamy J, Kilger E, Wolfing H et al (2010) Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer’s disease. Proc Natl Acad Sci USA 107:7969–7974

    Google Scholar 

  34. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    Article  CAS  PubMed  Google Scholar 

  35. Hornykiewicz O (2001) How l-DOPA was discovered as a drug for Parkinson’s disease 40 years ago. Wien Klin Wochenschr 113:855–862

    CAS  PubMed  Google Scholar 

  36. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318–1320

    Article  CAS  PubMed  Google Scholar 

  37. El-Agnaf OM, Jakes R, Curran MD, Wallace A (1998) Effects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of alpha-synuclein protein implicated in Parkinson’s disease. FEBS Lett 440:67–70

    Article  CAS  PubMed  Google Scholar 

  38. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  CAS  PubMed  Google Scholar 

  39. Rochet JC, Lansbury PT Jr (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68

    Article  CAS  PubMed  Google Scholar 

  40. Imarisio S, Carmichael J, Korolchuk V et al (2008) Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 412:191–209

    Article  CAS  PubMed  Google Scholar 

  41. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  PubMed  Google Scholar 

  42. Walsh DM, Selkoe DJ (2004) Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 11:213–228

    Article  CAS  PubMed  Google Scholar 

  43. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    Article  CAS  PubMed  Google Scholar 

  44. Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30:552–557

    Article  CAS  PubMed  Google Scholar 

  45. Amijee H, Scopes DI (2009) The quest for small molecules as amyloid inhibiting therapies for Alzheimer’s disease. J Alzheimers Dis 17:33–47

    CAS  PubMed  Google Scholar 

  46. Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 9:387–398

    Google Scholar 

  47. Saito T, Iwata N, Tsubuki S et al (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11:434–439

    Article  CAS  PubMed  Google Scholar 

  48. Selkoe DJ (2001) Clearing the brain’s amyloid cobwebs. Neuron 32:177–180

    Article  CAS  PubMed  Google Scholar 

  49. Salloway S, Sperling R, Gilman S et al (2009) A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73:2061–2070

    Article  CAS  PubMed  Google Scholar 

  50. Schenk D (2002) Amyloid-beta immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci 3:824–828

    Article  CAS  PubMed  Google Scholar 

  51. Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  CAS  PubMed  Google Scholar 

  52. Janus C, Pearson J, McLaurin J et al (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982

    Article  CAS  PubMed  Google Scholar 

  53. Weiner HL, Lemere CA, Maron R et al (2000) Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 48:567–579

    Article  CAS  PubMed  Google Scholar 

  54. Vellas B, Black R, Thal LJ, Fox NC et al (2009) Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr Alzheimer Res 6:144–151

    Article  CAS  PubMed  Google Scholar 

  55. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452

    Article  CAS  PubMed  Google Scholar 

  56. Serrano-Pozo A, William CM, Ferrer I et al (2010) Beneficial effect of human anti-amyloid-beta active immunization on neurite morphology and tau pathology. Brain 133:1312–1327

    Article  PubMed  Google Scholar 

  57. Masliah E, Hansen L, Adame A et al (2005) Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64:129–131

    CAS  PubMed  Google Scholar 

  58. Rinne JO, Brooks DJ, Rossor MN et al (2010) 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9:363–372

    Google Scholar 

  59. Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 200611 (DMW) and by Science Foundation Ireland, grant No. 08/1N.1/B2033 (DMW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welzel, A.T., Walsh, D.M. Aberrant protein structure and diseases of the brain. Ir J Med Sci 180, 15–22 (2011). https://doi.org/10.1007/s11845-010-0606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-010-0606-z

Keywords

Navigation