Skip to main content

Advertisement

Log in

Drug susceptibility and clonality of methicillin-resistant Staphylococcus epidermidis in hospitalized patients with hematological malignancies

  • Original Article
  • Published:
Irish Journal of Medical Science Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the clonal relatedness and drug susceptibility of Streptococcus epidermidis isolated from hematological patients.

Methods

All S. epidermidis isolated from hematological patients who developed bloodstream infections between June 2005 and December 2007 were included. The clonal relationship was tested by means of pulsed-field gel electrophoresis (PFGE) analysis.

Results

Fifteen methicillin-resistant S. epidermidis (MRSE) isolates were examined from patients’ blood culture samples. Two subgroups that differed approximately by 40% in their PFGE banding were identified. In clinical practice, two cases were cured with cephalosporin only, thus demonstrating sensitivity of the strains to beta-lactam antibiotics.

Conclusions

Our results represent two significant findings. One is the major capability of MRSE to colonize patients. The other is that some MRSE isolates proved to be sensitive to clindamycin, minocycline, and cephalosporin, so that using antibiotics to which MRSE is sensitive as first-line therapy can avoid the need for vancomycin in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mohanty SS, Kay PR (2004) Infection in total joint replacements. Why we screen MRSA when MRSE is the problem? J Bone Joint Surg Br 86:266–268

    Article  CAS  PubMed  Google Scholar 

  2. Falcone M, Micozzi A, Pompeo ME et al (2004) Methicillin-resistant staphylococcal bacteremia in patients with hematologic malignancies: clinical and microbiological retrospective comparative analysis of S. haemolyticus, S. epidermidis and S. aureus. J Chemother 16:540–548

    CAS  PubMed  Google Scholar 

  3. van Pelt C, Nouwen J, Lugtenburg E et al (2003) Strict infection control measures do not prevent clonal spread of coagulase negative staphylococci colonizing central venous catheters in neutropenic hemato-oncologic patients. FEMS Immunol Med Microbiol 38:153–158

    Article  PubMed  Google Scholar 

  4. Kloos WE, Bannerman TL (1994) Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev 7:117–140

    CAS  PubMed  Google Scholar 

  5. Nagashima G, Kikuchi T, Tsuyuzaki H et al (2006) To reduce catheter-related bloodstream infections: is the subclavian route better than the jugular route for central venous catheterization? J Infect Chemother 12:363–365

    Article  PubMed  Google Scholar 

  6. Liakopoulos V, Petinaki E, Efthimiadi G et al (2008) Clonal relatedness of methicillin-resistant coagulase-negative staphylococci in the haemodialysis unit of a single university centre in Greece. Nephrol Dial Transplant 23:2599–2603

    Article  CAS  PubMed  Google Scholar 

  7. Santos Sanches I, Mato R, de Lencastre H, Tomasz A (2000) CEM/NET Collaborators and the International Collaborators Patterns of multidrug resistance among methicillin-resistant hospital isolates of coagulase-positive and coagulase-negative staphylococci collected in the international multicenter study RESIST in 1997 and 1998. Microb Drug Resist 6:199–211

    Article  CAS  PubMed  Google Scholar 

  8. Hughes WT, Armstrong D, Bodey GP et al (2002) Guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis 34:730–751

    Article  PubMed  Google Scholar 

  9. Wroblewska MM, Marchel H, Luczak M (2002) Multidrug resistance in bacterial isolates from blood cultures of haematology patients. Int J Antimicrob Agents 19:237–240

    Article  CAS  PubMed  Google Scholar 

  10. Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB (2003) Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis 36:1103–1110

    Article  PubMed  Google Scholar 

  11. Del Favero A, Menichetti F, Martino P et al (2001) A multicenter, double-blind, placebo-controlled trial comparing piperacillin-tazobactam with and without amikacin as empiric therapy for febrile neutropenia. Clin Infect Dis 33:1295–1301

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura A, Oguri T, Misawa S et al (2007) In vitro activity of cefotiam against oxacillin-resistant Staphylococcus epidermidis strains-reevaluation of beta-lactam antibiotics efficiency on MRSE. Jpn J Antibiot 60:153–160

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida I, Kimura Y, Higashiyama I et al (2003) Surveillance of susceptibility of clinical isolates of various bacterial species to antibacterial agent, (in Japanese). Nihon Kagaku Ryo-ho Zasshi 51:179–208

    Google Scholar 

  14. Ikari J, Oguri T, Hiramatsu M et al. (2003) Post-marketing surveillance of antibacterial activities of cefozopran against various clinical isolates. Jpn J Antibiot 56:437–456 (in Japanese)

    Google Scholar 

  15. Diaz-Mitoma F, Harding GK, Hoban DJ, Roberts RS, Low DE (1987) Clinical significance of a test for slime production in ventriculoperitoneal shunt infections caused by coagulase-negative staphylococci. J Infect Dis 156:555–560

    CAS  PubMed  Google Scholar 

  16. Kotilainen P, Nikoskelainen J, Huovinen P (1991) Antibiotic susceptibility of coagulase-negative staphylococcal blood isolates with special reference to adherent, slime-producing Staphylococcus epidermidis strains. Scand J Infect Dis 23:325–332

    Article  CAS  PubMed  Google Scholar 

  17. Villari P, Sarnataro C, Iacuzio L (2000) Molecular epidemiology of Staphylococcus epidermidis in a neonatal intensive care unit over a three-year period. J Clin Microbiol 38:1740–1746

    CAS  PubMed  Google Scholar 

  18. Widerström M, Monsen T, Karlsson C, Wiström J (2006) Molecular epidemiology of meticillin-resistant coagulase-negative staphylococci in a Swedish county hospital: evidence of intra- and interhospital clonal spread. J Hosp Infect 64:177–183

    Article  PubMed  Google Scholar 

  19. Monsen T, Karlsson C, Wiström J (2005) Spread of clones of multidrug-resistant, coagulase-negative staphylococci within a university hospital. Infect Control Hosp Epidemiol 26:76–80

    Article  PubMed  Google Scholar 

  20. Müller-Premru M, Cernelc P (2004) Molecular epidemiology of catheter-related bloodstream infections caused by coagulase-negative staphylococci in haematological patients with neutropenia. Epidemiol Infect 132:921–925

    Article  PubMed  Google Scholar 

  21. Nomura K, Morikawa N, Ikawa K et al (2008) Optimized dosage and frequency of cefozopran for patients with febrile neutropenia based on population pharmacokinetic and pharmacodynamic analysis. J Antimicrob Chemother 61:892–900

    Article  CAS  PubMed  Google Scholar 

  22. National Committee for Clinical Laboratory Standards (1995) Performance standards for antimicrobial disk susceptibility testing. National Committee for Clinical Laboratory Standards. Villanova, PA

  23. Chung M, de Lencastre H, Matthews P et al (2000) Molecular typing of methicillin-resistant Staphylococcus aureus by pulsed-field gel electrophoresis: comparison of results obtained in a multilaboratory effort using identical protocols and MRSA strains. Microb Drug Resist 6:189–198

    Article  CAS  PubMed  Google Scholar 

  24. Couto I, Pereira S, Miragaia M, Sanches IS, de Lencastre H (2001) Identification of clinical staphylococcal isolates from humans by internal transcribed spacer PCR. J Clin Microbiol 39:3099–3103

    Article  CAS  PubMed  Google Scholar 

  25. Tenover FC, Arbeit RD, Goering RV et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    CAS  PubMed  Google Scholar 

  26. Lok CE (2006) Avoiding trouble down the line: the management and prevention of hemodialysis catheter-related infections. Adv Chronic Kidney Dis 13:225–244

    Article  PubMed  Google Scholar 

  27. Kitao T (2003) Survey of methicillin-resistant coagulase-negative staphylococci isolated from the fingers of nursing students. J Infect Chemother 9:30–34

    Article  CAS  PubMed  Google Scholar 

  28. Edmiston CE Jr, Seabrook GR, Cambria RA et al (2005) Molecular epidemiology of microbial contamination in the operating room environment: is there a risk for infection? Surgery 138:573–579 discussion: 579–582

    Article  PubMed  Google Scholar 

  29. Raimundo O, Heussler H, Bruhn JB et al (2002) Molecular epidemiology of coagulase-negative staphylococcal bacteraemia in a newborn intensive care unit. J Hosp Infect 51:33–42

    Article  CAS  PubMed  Google Scholar 

  30. Kassem II, Sigler V, Esseili MA (2007) Public computer surfaces are reservoirs for methicillin-resistant staphylococci. ISME J 1:265–268

    Article  CAS  PubMed  Google Scholar 

  31. Miragaia M, Couto I, Pereira SF et al (2002) Molecular characterization of methicillin-resistant Staphylococcus epidermidis clones: evidence of geographic dissemination. J Clin Microbiol 40:430–438

    Article  CAS  PubMed  Google Scholar 

  32. Liñares J, Sitges-Serra A, Garau J, Pérez JL, Martín R (1985) Pathogenesis of catheter sepsis: a prospective study with quantitative and semiquantitative cultures of catheter hub and segments. J Clin Microbiol 21:357–360

    PubMed  Google Scholar 

  33. Raad II, Bodey GP (1992) Infectious complications of indwelling vascular catheters. Clin Infect Dis 15:197–208

    CAS  PubMed  Google Scholar 

  34. Weightman NC, Simpson EM, Speller DC, Mott MG, Oakhill A (1988) Bacteraemia related to indwelling central venous catheters: prevention, diagnosis and treatment. Eur J Clin Microbiol Infect Dis 7:125–129

    Article  CAS  PubMed  Google Scholar 

  35. Groeger JS, Lucas AB, Thaler HT et al (1993) Infectious morbidity associated with long-term use of venous access devices in patients with cancer. Ann Intern Med 119:1168–1174

    CAS  PubMed  Google Scholar 

  36. Guiot HF, Visser LG, Barge RM, Bosboom R, van de Klundert JA (1994) Fatal meningitis due to catheter-related Staphylococcus epidermidis bacteraemia in a granulocytopenic patient without predisposing trauma. Eur J Clin Microbiol Infect Dis 13:772–773

    Article  CAS  PubMed  Google Scholar 

  37. Raad I, Narro J, Khan A, Tarrand J, Vartivarian S, Bodey GP (1992) Serious complications of vascular catheter-related Staphylococcus aureus bacteremia in cancer patients. Eur J Clin Microbiol Infect Dis 11:675–682

    Article  CAS  PubMed  Google Scholar 

  38. Tacconelli E, Tumbarello M, Pittiruti M et al (1997) Central venous catheter-related sepsis in a cohort of 366 hospitalised patients. Eur J Clin Microbiol Infect Dis 16:203–209

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nomura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, K., Mizumachi, E., Yamashita, M. et al. Drug susceptibility and clonality of methicillin-resistant Staphylococcus epidermidis in hospitalized patients with hematological malignancies. Ir J Med Sci 179, 351–356 (2010). https://doi.org/10.1007/s11845-010-0481-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-010-0481-7

Keywords

Navigation