Sophia

pp 1–15 | Cite as

Spirit

Article

Abstract

Many religions and religious philosophies say that ultimate reality is a kind of primal energy (such as qi, mana, manitou, teotl, pneuma, and so on). This energy is often described as a vital power animating living things, as a spiritual force directing the organization of matter, or as a divine creative power which generates all things. By refuting older conceptions of primal energy, modern science opens the door to new and more precise conceptions. Primal energy is referred to here as ‘spirit’. But spirit is a natural power. A naturalistic theory of spirit is developed using ideas from information theory and thermodynamics, such as the maximum entropy production principle. Spirit drives the evolution of complexity at all levels of existence.

Keywords

Spirit Energy Information theory Thermodynamics Striving possibles Ontological argument 

References

  1. Albanese, C. (1999). The subtle energies of spirit: explorations in metaphysical and New Age spirituality. Journal of the American Academy of Religion, 67(2), 305–325.CrossRefGoogle Scholar
  2. Annila, A., & Kuismanen, E. (2007). Natural hierarchy emerges from energy dispersal. BioSystems, 95, 227–233.CrossRefGoogle Scholar
  3. Asakura, S., & Oosawa, F. (1958). Interaction between particles suspended in solutions of macromolecules. Journal of Polymer Science, 33, 183–192.CrossRefGoogle Scholar
  4. Bedau, M. (1998). Philosophical content and method of artificial life. In T. Bynum & J. Moor (Eds.), The digital phoenix: how computers are changing philosophy (pp. 135–152). Malden: Basil Blackwell.Google Scholar
  5. Belkin, A., Hubler, A., & Bezryadin, A. (2015). Self-assembled wiggling nano-structures and the principle of maximum entropy production. Scientific Reports, 5(8323), 1–5.Google Scholar
  6. Bennett, C. (1988). Logical depth and physical complexity. In R. Herken (Ed.), The Universal Turing Machine (pp. 227–257). New York: Oxford University Press.Google Scholar
  7. Blumenfeld, D. (1981). Leibniz’s theory of the striving possibles. In R. Woolhouse (Ed.), Leibniz: metaphysics and philosophy of science (pp. 77–88). New York: Oxford University Press.Google Scholar
  8. Bower, J. (1988). The evolution of complexity by means of natural selection. Princeton: Princeton University Press.Google Scholar
  9. Carhart-Harris, R., et al. (2014). The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience, 8(Article 20), 1–22.Google Scholar
  10. Caroll, R. (2003). Entry on “energy”. In The Skeptic’s Dictionary (p. 119). Hoboken, NJ: John Wiley & Sons.Google Scholar
  11. Chaisson, E. (2001). Cosmic evolution: the rise of complexity in nature. Cambridge: Harvard University Press.Google Scholar
  12. Colyvan, M. (2001). The indispensability of mathematics. New York: Oxford University Press.CrossRefGoogle Scholar
  13. Dewar, R. (2006). Maximum entropy production and non-equilibrium statistical mechanics. In A. Kleidon & R. Lorenz (Eds.), Non-equilibrium thermodynamics and the production of entropy (pp. 41–55). New York: Springer.Google Scholar
  14. Dewar, R. (2010). Maximum entropy production and plant optimization theories. Philosophical Transactions of the Royal Society B, 365, 1429–1435.CrossRefGoogle Scholar
  15. DiFrisco, J. (2015). Elan vital revisited: Bergson and the thermodynamic paradigm. The Southern Journal of Philosophy, 53(1), 54–73.CrossRefGoogle Scholar
  16. Filler, J. (2009). Newtonian forces and evolutionary biology: a problem and solution for extending the force interpretation. Philosophy of Science, 76(5), 774–783.CrossRefGoogle Scholar
  17. Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11, 127–138.CrossRefGoogle Scholar
  18. Greene, B. (2005). The fabric of the cosmos. New York: Vintage.Google Scholar
  19. Hesse, J., & Gross, T. (2014). Self-organized criticality as a fundamental property of neural systems. Frontiers in Systems Neuroscience, 8(Article 166), 1–14.Google Scholar
  20. Hidalgo, J., et al. (2014). Information-based fitness and the emergence of criticality in living systems. PNAS, 111(28), 10095–10100.CrossRefGoogle Scholar
  21. Hume, D. (1779/1990) Dialogues Concerning Natural Religion. New York: Penguin.Google Scholar
  22. Kang, L., et al. (2016). Entropic forces stabilize diverse emergent structures in colloidal membranes. Soft Matter, 12(2), 386–401.CrossRefGoogle Scholar
  23. Kauffman, S. (1995). At home in the universe: the search for the laws of self-organization and complexity. New York: Oxford University Press.Google Scholar
  24. Kleidon, A. (2010). Non-equilibrium thermodynamics, maximum entropy production, and earth-system evolution. Philosophical Transactions of the Royal Society A, 368, 181–196.CrossRefGoogle Scholar
  25. Leibniz, G. W. (1697). On the ultimate origination of the universe. In P. Schrecker & A. Schrecker (Eds.), (1988) Leibniz: Monadology and other philosophical essays (pp. 84–94). New York: Macmillan Publishing.Google Scholar
  26. Lincoln, T., & Joyce, G. (2009). Self-sustained replication of an RNA enzyme. Science, 323(5918), 1229–1232.CrossRefGoogle Scholar
  27. Lineweaver, C. (2006). Cosmological and biological reproducibility: limits on the maximum entropy production principle. In A. Kleidon & R. Lorenz (Eds.), Non-equilibrium thermodynamics and the production of entropy (pp. 67–77). New York: Springer.Google Scholar
  28. Machta, J. (2011). Natural complexity, computational complexity, and depth. Chaos, 21, 0371111–0371118.CrossRefGoogle Scholar
  29. Marenduzzo, D., Finan, K., & Cook, P. (2006). The depletion attraction: an underappreciated force driving cellular organization. Journal of Cell Biology, 175(5), 681–686.CrossRefGoogle Scholar
  30. Martyushev, L., & Seleznev, V. (2006). Maximum entropy production principle in physics, chemistry, and biology. Physics Reports, 426, 1–45.CrossRefGoogle Scholar
  31. Massobrio, P., et al. (2015). Criticality as a signature of healthy neural systems. Frontiers in Systems Neuroscience, 9(Article 22), 1–3.Google Scholar
  32. Millican, P. (2004). The one fatal flaw in Anselm’s argument. Mind, 113, 451–467.CrossRefGoogle Scholar
  33. Mora, T., & Bialek, W. (2011). Are biological systems poised at criticality? Journal of Statistical Physics, 144, 268–302.CrossRefGoogle Scholar
  34. Morowitz, H., Schmitz-Moormann, N., & Salmon, J. (2005). Teilhard’s two energies. Zygon, 40(3), 721–732.CrossRefGoogle Scholar
  35. Muller, I. (2007). A history of thermodynamics: the doctrine of energy and entropy. New York: Springer.Google Scholar
  36. Peters, K. (2002). Dancing with the sacred: evolution, ecology, and God. Harrisburg: Trinity Press International.Google Scholar
  37. Pew Forum. (2008). U.S. religious landscape survey: religious beliefs and practices. Washington, DC: The Pew Forum on Religion & Public Life.Google Scholar
  38. Pew Forum. (2009). Many Americans mix multiple faiths: Eastern, New Age beliefs widespread. Washington, DC: The Pew Forum on Religion & Public Life.Google Scholar
  39. Prigogine, I., & Stengers, I. (1984). Order out of chaos. New York: Bantam Books.Google Scholar
  40. Rescher, N. (1991). G. W. Leibniz’s monadology: an edition for students. Pittsburgh: University of Pittsburgh Press.Google Scholar
  41. Rescher, N. (2010). Axiogenesis: an essay in metaphysical optimalism. New York: Lexington Books.Google Scholar
  42. Roos, N. (2014). Entropic forces in Brownian motion. American Journal of Physics, 82(12), 1161–1166.CrossRefGoogle Scholar
  43. Sharp, P. (2011). Buddhist enlightenment and the destruction of attractor networks. Journal of Consciousness Studies, 18(3–4), 137–169.Google Scholar
  44. Shew, W., & Plenz, D. (2012). The functional benefits of criticality in the cortex. The Neuroscientist, 19(1), 88–100.CrossRefGoogle Scholar
  45. Sober, E. (1984). The nature of selection: evolutionary theory in philosophical focus. Chicago: University of Chicago Press.Google Scholar
  46. Steinhart, E. (2014). Your digital afterlives: computational theories of life after death. New York: Palgrave Macmillan.CrossRefGoogle Scholar
  47. Stenger, V. (2001). The breath of God: identifying spiritual energy. In P. Kurtz (Ed.), Skeptical odysseys (pp. 363–374). Amherst: Prometheus Books.Google Scholar
  48. Stephens, C. (2004). Selection, drift, and the ‘forces’ of evolution. Philosophy of Science, 71(4), 550–570.CrossRefGoogle Scholar
  49. Strickland, L. (2006). Leibniz reinterpreted. New York: Continuum Press.Google Scholar
  50. Swenson, R. (1997). Evolutionary theory developing: the problem(s) with Darwin’s dangerous idea. Ecological Psychology, 9(1), 47–96.CrossRefGoogle Scholar
  51. Swenson, R. (2006). Spontaneous order, autocatakinetic closure, and the development of space-time. Annals of the New York Academy of Sciences, 901, 311–319.CrossRefGoogle Scholar
  52. Swenson, R. (2009). The fourth law of thermodynamics or the law of maximum entropy production (LMEP). Chemistry, 18(1), 333–339.Google Scholar
  53. Taft, R., Pheasant, M., & Mattick, J. (2007). The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays, 29(3), 288–299.CrossRefGoogle Scholar
  54. Unrean, P., & Srienc, F. (2011). Metabolic networks evolve towards states of maximum entropy production. Metabolic Engineering, 13(6), 666–673.CrossRefGoogle Scholar
  55. Vallino, J. (2010). Ecosystem biogeochemistry considered as a distributed metabolic network ordered by maximum entropy production. Philosophical Transactions of the Royal Society B, 365, 1417–1427.CrossRefGoogle Scholar
  56. Wissner-Gross, A., & Freer, C. (2013). Causal entropic forces. Physics Review Letters, 110, 168702.CrossRefGoogle Scholar
  57. Wolpert, D. (2013). Information width: a way for the second law to increase complexity. In C. Lineweaver, P. Davies, & M. Ruse (Eds.), Complexity and the arrow of time (pp. 246–276). New York: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhilosophyWilliam Paterson UniversityWayneUSA

Personalised recommendations