Skip to main content
Log in

Klinischer Erfolg endodontischer Maßnahmen im Milchgebiss

  • Zahnärztliche Fortbildung
  • Published:
wissen kompakt Aims and scope

Zusammenfassung

Die DAJ-Studie 2009 evaluierte ein differenziertes Bild der Zahngesundheit bei Kindern und Jugendlichen. Während die meisten Jugendlichen aufgrund des stetigen „caries decline“ heute kariesfrei sind, weisen 46,1 % der Schulanfänger Karieserfahrung an Milchzähnen auf. Gleichzeitig zeichnet sich eine immer stärkere Polarisierung der Karies ab. Meist werden die betroffenen Kinder relativ spät einem Zahnarzt vorgestellt, sodass Milchzahnkaries oft bereits mit einer Pulpitis vorliegt. Zur Vermeidung eines vorzeitigen Milchzahnverlusts mit Folgeschäden ist häufig eine endodontische Therapie durchzuführen. Im Rahmen einer systematischen Literaturrecherche wird hier der klinische Erfolg unterschiedlicher endodontischer Maßnahmen im Milchgebiss bewertet. Hierzu wurden ausschließlich kontrollierte oder randomisiert kontrollierte klinische Studien mit einer Mindestbeobachtungszeit von 6 Monaten herangezogen. Fazit ist, dass bei Einhaltung eines entsprechenden Durchführungsprotokolls der endodontischen Maßnahmen sehr hohe Erfolgsraten erreichbar sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13

Literatur

  1. Pieper K (2010) Epidemiologische Begleituntersuchungen zur Gruppenprophylaxe 2009. Deutsche Arbeitsgemeinschaft für Jugendzahnpflege (DAJ), Bonn

  2. Wyne AH (1999) Early childhood caries: nomenclature and case definition. Community Dent Oral Epidemiol 27:313–315

    Article  PubMed  Google Scholar 

  3. Al-Zayer MA, Straffon LH, Feigal RJ, Welch KB (2003) Indirect pulp treatment of primary posterior teeth: a retrospective study. Pediatr Dent 25:29–36

    PubMed  Google Scholar 

  4. Duggal MS, Nooh A, High A (2002) Response of the primary pulp to inflammation: a review of the Leeds studies and challenges for the future. Eur J Paediatr Dent 3:111–114

    PubMed  Google Scholar 

  5. Goodman JR (1985) Endodontic treatment for children. Br Dent J 158:363–366

    Article  PubMed  Google Scholar 

  6. Paras LG, Rapp R, Piesco NP et al (1993) An investigation of accessory foramina in furcation areas of human primary molars: Part 1. SEM observations of frequency, size and location of accessory foramina in the internal and external furcation areas. J Clin Pediatr Dent 17:65–69

    PubMed  Google Scholar 

  7. Heinrich-Weltzien R, Kühnisch J (2007) Milchzahnendodontie. Zahnmedizin Up2date 2:145–168

    Article  Google Scholar 

  8. American Academy of Pediatric Dentistry (AAPD) (2008) Guideline on pulp therapy for primary and young permanent teeth. Pediatr Dent 30:170–174

    Google Scholar 

  9. Rabchinsky J, Donly KJ (1993) A comparison of glass-ionomer cement and calcium hydroxide liners in amalgam restorations. Int J Periodontics Restorative Dent 13:378–383

    PubMed  Google Scholar 

  10. Fuks AB (2008) Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. J Endod 34:S18–S24

    Article  PubMed  Google Scholar 

  11. Guelmann M, Bookmyer KL, Villalta P, Garcia-Godoy F (2004) Microleakage of restorative techniques for pulpotomized primary molars. J Dent Child (Chic) 71:209–211

    Google Scholar 

  12. Rodd HD, Waterhouse PJ, Fuks AB et al (2006) Pulp therapy for primary molars. Int J Paediatr Dent 16(Suppl 1):15–23

    Article  PubMed  Google Scholar 

  13. Orhan AI, Oz FT, Orhan K (2010) Pulp exposure occurrence and outcomes after 1- or 2-visit indirect pulp therapy vs complete caries removal in primary and permanent molars. Pediatr Dent 32:347–355

    PubMed  Google Scholar 

  14. Farooq NS, Coll JA, Kuwabara A, Shelton P (2000) Success rates of formocresol pulpotomy and indirect pulp therapy in the treatment of deep dentinal caries in primary teeth. Pediatr Dent 22:278–286

    PubMed  Google Scholar 

  15. Falster CA, Araujo FB, Straffon LH, Nor JE (2002) Indirect pulp treatment: in vivo outcomes of an adhesive resin system vs calcium hydroxide for protection of the dentin-pulp complex. Pediatr Dent 24:241–248

    PubMed  Google Scholar 

  16. Thompson V, Craig RG, Curro FA et al (2008) Treatment of deep carious lesions by complete excavation or partial removal: a critical review. J Am Dent Assoc 139:705–712

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ricketts DN, Kidd EA, Innes N, Clarkson J (2006) Complete or ultraconservative removal of decayed tissue in unfilled teeth. Cochrane Database Syst Rev:CD003808

    Google Scholar 

  18. Ribeiro CC, Baratieri LN, Perdigao J et al (1999) A clinical, radiographic, and scanning electron microscopic evaluation of adhesive restorations on carious dentin in primary teeth. Quintessence Int 30:591–599

    PubMed  Google Scholar 

  19. Pinto AS, Araujo FB de, Franzon R et al (2006) Clinical and microbiological effect of calcium hydroxide protection in indirect pulp capping in primary teeth. Am J Dent 19:382–386

    PubMed  Google Scholar 

  20. Oliveira EF, Carminatti G, Fontanella V, Maltz M (2006) The monitoring of deep caries lesions after incomplete dentine caries removal: results after 14–18 months. Clin Oral Investig 10:134–139

    Article  PubMed  Google Scholar 

  21. Marchi JJ, Araujo FB de, Froner AM et al (2006) Indirect pulp capping in the primary dentition: a 4 year follow-up study. J Clin Pediatr Dent 31:68–71

    PubMed  Google Scholar 

  22. Loyola-Rodriguez JP, Garcia-Godoy F, Lindquist R (1994) Growth inhibition of glass ionomer cements on mutans streptococci. Pediatr Dent 16:346–349

    PubMed  Google Scholar 

  23. Foley J, Evans D, Blackwell A (2004) Partial caries removal and cariostatic materials in carious primary molar teeth: a randomised controlled clinical trial. Br Dent J 197:697–701

    Article  PubMed  Google Scholar 

  24. Duque C, Negrini TC, Hebling J, Spolidorio DM (2005) Inhibitory activity of glass-ionomer cements on cariogenic bacteria. Oper Dent 30:636–640

    PubMed  Google Scholar 

  25. Duque C, Negrini TC, Sacono NT et al (2009) Clinical and microbiological performance of resin-modified glass-ionomer liners after incomplete dentine caries removal. Clin Oral Investig 13:465–471

    Article  PubMed  Google Scholar 

  26. Vij R, Coll JA, Shelton P, Farooq NS (2004) Caries control and other variables associated with success of primary molar vital pulp therapy. Pediatr Dent 26:214–220

    PubMed  Google Scholar 

  27. Menezes JP, Rosenblatt A, Medeiros E (2006) Clinical evaluation of atraumatic restorations in primary molars: a comparison between 2 glass ionomer cements. J Dent Child (Chic) 73:91–97

    Google Scholar 

  28. Souza EM de, Cefaly DF, Terada RS et al (2003) Clinical evaluation of the ART technique using high density and resin-modified glass lonomer cements. Oral Health Prev Dent 1:201–207

    PubMed  Google Scholar 

  29. Davidovich E, Weiss E, Fuks AB, Beyth N (2007) Surface antibacterial properties of glass ionomer cements used in atraumatic restorative treatment. J Am Dent Assoc 138:1347–1352

    Article  PubMed  Google Scholar 

  30. Coll JA (2008) Indirect pulp capping and primary teeth: is the primary tooth pulpotomy out of date? Pediatr Dent 30:230–236

    PubMed  Google Scholar 

  31. Agamy HA, Bakry NS, Mounir MM, Avery DR (2004) Comparison of mineral trioxide aggregate and formocresol as pulp-capping agents in pulpotomized primary teeth. Pediatr Dent 26:302–309

    PubMed  Google Scholar 

  32. Kopel HM (1992) Considerations for the direct pulp capping procedure in primary teeth: a review of the literature. ASDC J Dent Child 59:141–149

    PubMed  Google Scholar 

  33. Maroto M, Barberia E, Vera V, Garcia-Godoy F (2007) Mineral trioxide aggregate as pulp dressing agent in pulpotomy treatment of primary molars: 42-month clinical study. Am J Dent 20:283–286

    PubMed  Google Scholar 

  34. Tuna D, Olmez A (2008) Clinical long-term evaluation of MTA as a direct pulp capping material in primary teeth. Int Endod J 41:273–278

    Article  PubMed  Google Scholar 

  35. Caicedo R, Abbott PV, Alongi DJ, Alarcon MY (2006) Clinical, radiographic and histological analysis of the effects of mineral trioxide aggregate used in direct pulp capping and pulpotomies of primary teeth. Aust Dent J 51:297–305

    Article  PubMed  Google Scholar 

  36. Robertson A, Andreasen FM, Andreasen JO, Noren JG (2000) Long-term prognosis of crown-fractured permanent incisors. The effect of stage of root development and associated luxation injury. Int J Paediatr Dent 10:191–199

    Article  PubMed  Google Scholar 

  37. Blanco LP de (1996) Treatment of crown fractures with pulp exposure. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 82:564–568

    Article  PubMed  Google Scholar 

  38. Krämer N (2013) Klinischer Erfolg endodontischer Maßnahmen im Milchgebiss. Oralprophylaxe Kinderzahnheilkd 35:60–63

    Google Scholar 

  39. Krämer N, Üsküdar A, Kühnisch J, Frankenberger R (2013) Clinical outcome of endodontic treatment in the primary dentition. Eur Arch Paediatr Dent (im Druck)

  40. Burnett S, Walker J (2002) Comparison of ferric sulfate, formocresol, and a combination of ferric sulfate/formocresol in primary tooth vital pulpotomies: a retrospective radiographic survey. ASDC J Dent Child 69:44–48, 12

    PubMed  Google Scholar 

  41. Huth KC, Paschos E, Hajek-Al-Khatar N et al (2005) Effectiveness of 4 pulpotomy techniques – randomized controlled trial. J Dent Res 84:1144–1148

    Article  PubMed  Google Scholar 

  42. Ibricevic H, Al-Jame Q (2003) Ferric sulphate and formocresol in pulpotomy of primary molars: long term follow-up study. Eur J Paediatr Dent 4:28–32

    PubMed  Google Scholar 

  43. Loh A, O’Hoy P, Tran X et al (2004) Evidence-based assessment: evaluation of the formocresol versus ferric sulfate primary molar pulpotomy. Pediatr Dent 26:401–409

    PubMed  Google Scholar 

  44. Markovic D, Zivojinovic V, Vucetic M (2005) Evaluation of three pulpotomy medicaments in primary teeth. Eur J Paediatr Dent 6:133–138

    PubMed  Google Scholar 

  45. Ng FK, Messer LB (2008) Mineral trioxide aggregate as a pulpotomy medicament: a narrative review. Eur Arch Paediatr Dent 9:4–11

    Article  PubMed  Google Scholar 

  46. Ng FK, Messer LB (2008) Mineral trioxide aggregate as a pulpotomy medicament: an evidence-based assessment. Eur Arch Paediatr Dent 9:58–73

    Article  PubMed  Google Scholar 

  47. Smith NL, Seale NS, Nunn ME (2000) Ferric sulfate pulpotomy in primary molars: a retrospective study. Pediatr Dent 22:192–199

    PubMed  Google Scholar 

  48. Garrocho-Rangel A, Flores H, Silva-Herzog D et al (2009) Efficacy of EMD versus calcium hydroxide in direct pulp capping of primary molars: a randomized controlled clinical trial. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:733–738

    Article  PubMed  Google Scholar 

  49. Sabbarini J, Mohamed A, Wahba N et al (2008) Comparison of enamel matrix derivative versus formocresol as pulpotomy agents in the primary dentition. J Endod 34:284–287

    Article  PubMed  Google Scholar 

  50. Mack RB, Dean JA (1993) Electrosurgical pulpotomy: a retrospective human study. ASDC J Dent Child 60:107–114

    PubMed  Google Scholar 

  51. Dean JA, Mack RB, Fulkerson BT, Sanders BJ (2002) Comparison of electrosurgical and formocresol pulpotomy procedures in children. Int J Paediatr Dent 12:177–182

    Article  PubMed  Google Scholar 

  52. Elliott RD, Roberts MW, Burkes J, Phillips C (1999) Evaluation of the carbon dioxide laser on vital human primary pulp tissue. Pediatr Dent 21:327–331

    PubMed  Google Scholar 

  53. Liu JF (2006) Effects of Nd:YAG laser pulpotomy on human primary molars. J Endod 32:404–407

    Article  PubMed  Google Scholar 

  54. Gruythuysen RJ, Weerheijm KL (1997) Calcium hydroxide pulpotomy with a light-cured cavity-sealing material after two years. ASDC J Dent Child 64:251–253

    PubMed  Google Scholar 

  55. Heilig J, Yates J, Siskin M et al (1984) Calcium hydroxide pulpotomy for primary teeth: a clinical study. J Am Dent Assoc 108:775–778

    PubMed  Google Scholar 

  56. Kalaskar RR, Damle SG (2004) Comparative evaluation of lyophilized freeze dried platelet derived preparation with calcium hydroxide as pulpotomy agents in primary molars. J Indian Soc Pedod Prev Dent 22:24–29

    PubMed  Google Scholar 

  57. Moretti AB, Sakai VT, Oliveira TM et al (2008) The effectiveness of mineral trioxide aggregate, calcium hydroxide and formocresol for pulpotomies in primary teeth. Int Endod J 41:547–555

    Article  PubMed  Google Scholar 

  58. Percinoto C, Castro AM de, Pinto LM (2006) Clinical and radiographic evaluation of pulpotomies employing calcium hydroxide and trioxide mineral aggregate. Gen Dent 54:258–261

    PubMed  Google Scholar 

  59. Sasaki H, Ogawa T, Koreeda M et al (2002) Electrocoagulation extends the indication of calcium hydroxide pulpotomy in the primary dentition. J Clin Pediatr Dent 26:275–277

    PubMed  Google Scholar 

  60. Schroder U (1978) A 2-year follow-up of primary molars, pulpotomized with a gentle technique and capped with calcium hydroxide. Scand J Dent Res 86:273–278

    PubMed  Google Scholar 

  61. Shumayrikh NM, Adenubi JO (1999) Clinical evaluation of glutaraldehyde with calcium hydroxide and glutaraldehyde with zinc oxide eugenol in pulpotomy of primary molars. Endod Dent Traumatol 15:259–264

    Article  PubMed  Google Scholar 

  62. Sonmez D, Sari S, Cetinbas T (2008) A Comparison of four pulpotomy techniques in primary molars: a long-term follow-up. J Endod 34:950–955

    Article  PubMed  Google Scholar 

  63. Tunc ES, Saroglu I, Sari S, Gunhan O (2006) The effect of sodium hypochlorite application on the success of calcium hydroxide pulpotomy in primary teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:e22–e26

    Article  PubMed  Google Scholar 

  64. Waterhouse PJ, Nunn JH, Whitworth JM (2000) An investigation of the relative efficacy of Buckley’s Formocresol and calcium hydroxide in primary molar vital pulp therapy. Br Dent J 188:32–36

    PubMed  Google Scholar 

  65. Zurn D, Seale NS (2008) Light-cured calcium hydroxide vs formocresol in human primary molar pulpotomies: a randomized controlled trial. Pediatr Dent 30:34–41

    PubMed  Google Scholar 

  66. Duggal M, Al Ansary M (2006) Mineral trioxide aggregate in primary molar pulpotomies. Evid Based Dent 7:35–36

    Article  PubMed  Google Scholar 

  67. Eidelman E, Holan G, Fuks AB (2001) Mineral trioxide aggregate vs. formocresol in pulpotomized primary molars: a preliminary report. Pediatr Dent 23:15–18

    PubMed  Google Scholar 

  68. Holan G, Eidelman E, Fuks AB (2005) Long-term evaluation of pulpotomy in primary molars using mineral trioxide aggregate or formocresol. Pediatr Dent 27:129–136

    PubMed  Google Scholar 

  69. Roberts HW, Toth JM, Berzins DW, Charlton DG (2008) Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater 24:149–164

    Article  PubMed  Google Scholar 

  70. Aeinehchi M, Dadvand S, Fayazi S, Bayat-Movahed S (2007) Randomized controlled trial of mineral trioxide aggregate and formocresol for pulpotomy in primary molar teeth. Int Endod J 40:261–267

    Article  PubMed  Google Scholar 

  71. Ansari G, Ranjpour M (2010) Mineral trioxide aggregate and formocresol pulpotomy of primary teeth: a 2-year follow-up. Int Endod J 43:413–418

    Article  PubMed  Google Scholar 

  72. Farsi N, Alamoudi N, Balto K, Mushayt A (2005) Success of mineral trioxide aggregate in pulpotomized primary molars. J Clin Pediatr Dent 29:307–311

    PubMed  Google Scholar 

  73. Noorollahian H (2008) Comparison of mineral trioxide aggregate and formocresol as pulp medicaments for pulpotomies in primary molars. Br Dent J 204:E20

    Article  PubMed  Google Scholar 

  74. Zealand CM, Briskie DM, Botero TM et al (2010) Comparing gray mineral trioxide aggregate and diluted formocresol in pulpotomized human primary molars. Pediatr Dent 32:393–399

    PubMed  Google Scholar 

  75. Peng L, Ye L, Guo X et al (2007) Evaluation of formocresol versus ferric sulphate primary molar pulpotomy: a systematic review and meta-analysis. Int Endod J 40:751–757

    Article  PubMed  Google Scholar 

  76. Guelmann M, Fair J, Turner C, Courts FJ (2002) The success of emergency pulpotomies in primary molars. Pediatr Dent 24:217–220

    PubMed  Google Scholar 

  77. Guelmann M, Fair J, Bimstein E (2005) Permanent versus temporary restorations after emergency pulpotomies in primary molars. Pediatr Dent 27:478–481

    PubMed  Google Scholar 

  78. Rimondini L, Baroni C (1995) Morphologic criteria for root canal treatment of primary molars undergoing resorption. Endod Dent Traumatol 11:136–141

    Article  PubMed  Google Scholar 

  79. Bodur H, Odabas M, Tulunoglu O, Tinaz AC (2008) Accuracy of two different apex locators in primary teeth with and without root resorption. Clin Oral Investig 12:137–141

    Article  PubMed  Google Scholar 

  80. Nelson-Filho P, Lucisano MP, Leonardo MR et al (2010) Electronic working length determination in primary teeth by ProPex and Digital Signal Processing. Aust Endod J 36:105–108

    Article  PubMed  Google Scholar 

  81. Sreeja R, Minal C, Madhuri T et al (2009) A scanning electron microscopic study of the patterns of external root resorption under different conditions. J Appl Oral Sci 17:481–486

    Article  PubMed  Google Scholar 

  82. Leonardo MR, Silva LA, Nelson-Filho P et al (2008) Ex vivo evaluation of the accuracy of two electronic apex locators during root canal length determination in primary teeth. Int Endod J 41:317–321

    Article  PubMed  Google Scholar 

  83. Tosun G, Erdemir A, Eldeniz AU et al (2008) Accuracy of two electronic apex locators in primary teeth with and without apical resorption: a laboratory study. Int Endod J 41:436–441

    Article  PubMed  Google Scholar 

  84. Angwaravong O, Panitvisai P (2009) Accuracy of an electronic apex locator in primary teeth with root resorption. Int Endod J 42:115–121

    Article  PubMed  Google Scholar 

  85. Ghaemmaghami S, Eberle J, Duperon D (2008) Evaluation of the Root ZX apex locator in primary teeth. Pediatr Dent 30:496–498

    PubMed  Google Scholar 

  86. Kielbassa AM, Muller U, Munz I, Monting JS (2003) Clinical evaluation of the measuring accuracy of ROOT ZX in primary teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95:94–100

    Article  PubMed  Google Scholar 

  87. Mente J, Seidel J, Buchalla W, Koch MJ (2002) Electronic determination of root canal length in primary teeth with and without root resorption. Int Endod J 35:447–452

    Article  PubMed  Google Scholar 

  88. Mello-Moura AC, Moura-Netto C, Araki AT et al (2010) Ex vivo performance of five methods for root canal length determination in primary anterior teeth. Int Endod J 43:142–147

    Article  PubMed  Google Scholar 

  89. Kleier DJ, Averbach RE, Mehdipour O (2008) The sodium hypochlorite accident: experience of diplomates of the American Board of Endodontics. J Endod 34:1346–1350

    Article  PubMed  Google Scholar 

  90. Mehdipour O, Kleier DJ, Averbach RE (2007) Anatomy of sodium hypochlorite accidents. Compend Contin Educ Dent 28:544–546, 548, 550

    PubMed  Google Scholar 

  91. Chawla HS, Mani SA, Tewari A, Goyal A (1998) Calcium hydroxide as a root canal filling material in primary teeth – a pilot study. J Indian Soc Pedod Prev Dent 16:90–92

    PubMed  Google Scholar 

  92. Holan G, Fuks AB (1993) A comparison of pulpectomies using ZOE and KRI paste in primary molars: a retrospective study. Pediatr Dent 15:403–407

    PubMed  Google Scholar 

  93. Mendoza AM, Reina JE, Garcia-Godoy F (2010) Evolution and prognosis of necrotic primary teeth after pulpectomy. Am J Dent 23:265–268

    PubMed  Google Scholar 

  94. Ozalp N, Saroglu I, Sonmez H (2005) Evaluation of various root canal filling materials in primary molar pulpectomies: an in vivo study. Am J Dent 18:347–350

    PubMed  Google Scholar 

  95. Nurko C, Garcia-Godoy F (1999) Evaluation of a calcium hydroxide/iodoform paste (Vitapex) in root canal therapy for primary teeth. J Clin Pediatr Dent 23:289–294

    PubMed  Google Scholar 

  96. Nakornchai S, Banditsing P, Visetratana N (2010) Clinical evaluation of 3Mix and Vitapex as treatment options for pulpally involved primary molars. Int J Paediatr Dent 20:214–221

    Article  PubMed  Google Scholar 

  97. Mortazavi M, Mesbahi M (2004) Comparison of zinc oxide and eugenol, and Vitapex for root canal treatment of necrotic primary teeth. Int J Paediatr Dent 14:417–424

    Article  PubMed  Google Scholar 

  98. Primosch RE, Ahmadi A, Setzer B, Guelmann M (2005) A retrospective assessment of zinc oxide-eugenol pulpectomies in vital maxillary primary incisors successfully restored with composite resin crowns. Pediatr Dent 27:470–477

    PubMed  Google Scholar 

  99. Sari S, Okte Z (2008) Success rate of Sealapex in root canal treatment for primary teeth: 3-year follow-up. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:e93–e96

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. A. Üsküdar, R. Frankenberger und N. Krämer geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Üsküdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Üsküdar, A., Frankenberger, R. & Krämer, N. Klinischer Erfolg endodontischer Maßnahmen im Milchgebiss. wissen kompakt 8, 39–51 (2014). https://doi.org/10.1007/s11838-013-0196-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11838-013-0196-5

Schlüsselwörter

Navigation