Skip to main content
Log in

3-D- versus 2-D-Implantatplanung

  • Zahnärztliche Fortbildung
  • Published:
wissen kompakt Aims and scope

Zusammenfassung

Die klinische Exaktheit der Implantatinsertion mittels 3-D-Führungsschablonen liegt bei etwa 1 mm Positionsabweichung des Implantats und 5° Winkelabweichung der Implantatachse gegenüber der virtuellen Planung. Im Vergleich zur 2-D-geplanten Freihandmethode erweist sich die 3-D-basierte Technik bezüglich Implantatposition und -achsabweichung als deutlich überlegen. Die Mindestabstände zu den Nachbarstrukturen sollten auch bei Verwendung einer 3-D-Führungsschablone eingehalten werden, da auch hier von einer gewissen Ungenauigkeit ausgegangen werden muss. Bezüglich der prothetischen Zielsetzung kann festgestellt werden, dass die 3-D-Planung eine optimierte (virtuelle) Positionierung der Implantate in Relation zum geplanten Zahnersatz erlaubt und diese mittels 3-D-Führungsschablonen eine exakte klinische Umsetzung erfährt. Eine eindeutige Indikation für eine 3-D-Diagnostik vorausgesetzt, sollte regelmäßig geprüft werden, ob die Daten nicht auch für eine Führungsschablone genutzt werden können. Die Vorzüge einer geführten Chirurgie bleiben ansonsten ungenutzt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Annibali S, Ripari M, La Monaca G et al (2009) Local accidents in dental implant surgery: prevention and treatment. Int J Periodontics Restorative Dent 29:325–331

    PubMed  Google Scholar 

  2. Azari A, Nikzad S (2008) Flapless implant surgery: review of the literature and report of 2 cases with computer-guided surgical approach. J Oral Maxillofac Surg 66:1015–1021

    Article  PubMed  Google Scholar 

  3. Becker W, Goldstein M, Becker BE, Sennerby L (2005) Minimally invasive flapless implant surgery: a prospective multicenter study. Clin Implant Dent Relat Res 7:21–27

    Article  Google Scholar 

  4. Berberi A, Le Breton G, Mani J et al (1993) Lingual paresthesia following surgical placement of implants: report of a case. Int J Oral Maxillofac Implants 8:580–582

    PubMed  Google Scholar 

  5. Besimo CE, Lambrecht JT, Guindy JS (2000) Accuracy of implant treatment planning utilizing template-guided reformatted computed tomography. Dentomaxillofac Radiol 29:46–51

    Article  PubMed  Google Scholar 

  6. Brief J, Edinger D, Hassfeld S, Eggers G (2005) The accuracy of two commercially available systems for image-guided dental implant insertion based on infrared tracking cameras was compared with manual implantation. Clin Oral Implants Res 16(4):495–501

    Article  PubMed  Google Scholar 

  7. Campelo LD, Camara JR (2002) Flapless implant surgery: a 10-year clinical retrospective analysis. Int J Oral Maxillofac Implants 17(2):271–276

    PubMed  Google Scholar 

  8. Casap N, Tarazi E, Wexler A et al (2005) Intraoperative computerized navigation for flapless implant surgery and immediate loading in the edentulous mandible. Int J Oral Maxillofac Implants 20(1):92–98

    PubMed  Google Scholar 

  9. Chan HL, Benavides E, Yeh CY et al (2011) Risk assessment of lingual plate perforation in posterior mandibular region: a virtual implant placement study using cone beam computed tomography. J Periodontol 82:129–135

    Article  PubMed  Google Scholar 

  10. Di Giacomo GA, Cury PR, Araujo NS de (2005) Clinical application of stereolithographic surgical guides for implant placement: preliminary results. J Periodontol 76(4):503–507

    Article  Google Scholar 

  11. Elian N, Jalbout ZN, Classi AJ et al (2008) Precision of flapless implant placement using real-time surgical navigation: a case series. Int J Oral Maxillofac Implants 23:1123–1127

    PubMed  Google Scholar 

  12. Ersoy AE, Turkyilmaz I, Ozan O, McGlumphy EA (2008) Reliability of implant placement with stereolithographic surgical guides generated from computed tomography: clinical data from 94 implants. J Periodontol 79(8):1339–1345

    Article  PubMed  Google Scholar 

  13. Fortin T, Bosson JL, Coudert JL, Isidori M (2003) Reliability of preoperative planning of an imaged-guided system for oral implant placement based on 3-dimensional images: an in vivo study. Int J Oral Maxillofac Implants 18:886–893

    PubMed  Google Scholar 

  14. Holst S, Blatz MB, Eitner S (2007) Precision for computer-guided implant placement: using 3D planning software and fixed intraoral reference points. J Oral Maxillofac Surg 65(3):393–399

    Article  PubMed  Google Scholar 

  15. Kalpidis CD, Setayesh RM (2004) Hemorrhaging associated with endosseous implant placement in the anterior mandible: a review of the literature. J Periodontol 75:631–645

    Article  PubMed  Google Scholar 

  16. Lin CL, Wang JC, Ramp LC, Liu PR (2008) Biomechanical response of implant systems placed in the maxillary posterior region under various conditions of angulation, bone density, and loading. Int J Oral Maxillofac Implants 23:57–64

    PubMed  Google Scholar 

  17. Misch CE, Bidez MW (1994) Implant-protected occlusion: a biomechanical rationale. Compendium 15:1330–1334

    PubMed  Google Scholar 

  18. Misir AF, Sumer M, Yenisey M, Ergioglu E (2009) Effect of surgical drill guide on heat generated from implant drilling. J Oral Maxillofac Surg 67:2663–2668

    Article  PubMed  Google Scholar 

  19. Nickenig HJ, Spiekermann H (2006) CT-based surgical templates vs. traditional surgical guides. J Dent Implant 22:272–280

    Google Scholar 

  20. Nickenig HJ, Eitner S (2007) Reliability of implant placement after virtual planning of implant positions using cone beam CT data and surgical (guide) templates. J Craniomaxillofac Surg 35:207–211

    Article  PubMed  Google Scholar 

  21. Nickenig HJ, Eitner S (2010) An alternative method to match planned and achieved positions of implants, after virtual planning using cone beam CT data and surgical guide templates – A method reducing patient radiation exposure (part I). J Craniomaxillofac Surg 21:1386–1393

    Google Scholar 

  22. Nickenig HJ, Wichmann M, Hamel J et al (2010) Evaluation of the difference in accuracy between implant placement by virtual planning data and surgical guide templates versus the conventional free-hand method – a combined in vivo – in vitro technique using cone-beam CT data (Part II). J Craniomaxillofac Surg 38:488–493

    Article  PubMed  Google Scholar 

  23. Nickenig HJ, Wichmann M, Schlegel KA, Eitner S (2010) Radiographic evaluation of marginal bone levels during healing period, adjacent to parallel-screw cylinder implants inserted in the posterior zone of the jaws, placed with flapless surgery. Clin Oral Implants Res 2:1386–1393

    Article  Google Scholar 

  24. Nkenke E, Eitner S, Radespiel-Tröger M et al (2007) Patient-centred outcomes comparing transmucosal implant placement with an open approach in the maxilla: a prospective, non-randomized pilot study. Clin Oral Implants Res 18:197–203

    Article  PubMed  Google Scholar 

  25. Oh TJ, Shotwell JL, Billy EJ, Wang HL (2006) Effect of implant surgery on soft tissue profile: a randomized controlled clinical trial. J Periodontol 77:874–882

    Article  PubMed  Google Scholar 

  26. Oyama K, Kan JYK, Kleinmann AS et al (2009) Misfit of implant fixed complete denture following computer-guided surgery. Int J Oral Maxillofac Implants 24:124–130

    PubMed  Google Scholar 

  27. Porter JA, Fraunhofer JA von (2005) Success or failure of dental implants? A literature review with treatment considerations. Gen Dent 53:423-432

    PubMed  Google Scholar 

  28. Ruppin J, Popovic A, Strauss M et al (2008) Evaluation of the accuracy of three different computer-aided surgery Systems in dental implantology: optical tracking vs. stereolithographic splint systems. Clin Oral Implants Res 19(7):709–716

    PubMed  Google Scholar 

  29. Sarment DP, Sukovic P, Clinthorne N (2003) Accuracy of implant placement with stereolithographic surgical guide. Int J Oral Maxillofac Implants 18:571–577

    PubMed  Google Scholar 

  30. Sclar AG (2007) Guidelines for flapless surgery. J Oral Maxillofac Surg 65:20–32

    Article  PubMed  Google Scholar 

  31. Van Assche N, Van Steenberghe D, Guerrero ME et al (2007) Accuracy of implant placement based on pre-surgical planning of three-dimensional cone-beam images: a pilot study. J Clin Periodontol 34(9):816–821

    Article  Google Scholar 

  32. Watanabe H, Mohammad AM, Kurabayashi T, Aoki H (2010) Mandible size and morphology determined with CT on a premise of dental implant operation. Surg Radiol Anat 32:343–349

    Article  PubMed  Google Scholar 

  33. Widmann G, Widmann R, Widmann E et al (2005) In vitro accuracy of a novel registration and targeting technique for image guided template production. Clin Oral Implants Res 16:502–508

    Article  PubMed  Google Scholar 

  34. Wittwer G, Adeyemo WL, Schicho K et al (2007) Prospective randomized clinical comparison of 2 dental implant navigation systems. Int J Oral Maxillofac Implants 22(5):785–790

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-J. Nickenig M.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nickenig, HJ. 3-D- versus 2-D-Implantatplanung. wissen kompakt 6, 3–12 (2012). https://doi.org/10.1007/s11838-012-0150-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11838-012-0150-y

Schlüsselwörter

Navigation