Skip to main content
Log in

The development of aluminum reduction cell process control

  • Overview
  • Aluminum Smelting
  • Published:
JOM Aims and scope Submit manuscript

Abstract

It was primarily the improved understanding and control of magnetic fields, assisted more recently by the use of computer modeling, that made modern aluminum reduction cells more stable and has enabled them to grow larger. However, the implementation of improved process control systems has not only underpinned the success of new cell designs, but has also enabled many older technologies to remain competitive. While there is still much room for improving reduction-cell control systems, this task is increasingly difficult due to the diminishing performance gains available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Bonnardel and P. Homsi, Light Metals 1999, ed. C.E. Eckert (Warrendale, PA: TMS, 1999), pp. 303–309.

    Google Scholar 

  2. “Bath Temperature and Level Measurement Device and Process,” French Patent FR2727985 (December 1994).

  3. G.A. Guomundsson, Light Metals 1999, ed. C.E. Eckert (Warrendale, PA: TMS, 1999), pp. 297–302.

    Google Scholar 

  4. Qiu Zhuxian et al., JOM, 46 (8) (1994), pp. 28–30.

    Google Scholar 

  5. J.J. del Campo and F. Blanco, Light Metals 1995, ed. J.W. Evans (Warrendale, PA: TMS, 1995), pp. 413–421.

    Google Scholar 

  6. D. Stefanidis and D. Georgantonis, Light Metals 1993, ed. S.K. Das (Warrendale, PA: TMS, 1993), pp. 271–276.

    Google Scholar 

  7. “Process for Measuring and Controlling the Concentration of Alumina in Electrolyte Cells for Aluminium Production,” European Patent 901,226,134 (27 November 1990).

  8. N.E. Richards et al., Light Metals 1995, ed. J.W. Evans (Warrendale, PA: TMS, 1995), pp. 391–404.

    Google Scholar 

  9. P. Verstreken, JOM, 49 (11) (1997), pp. 43–46.

    CAS  Google Scholar 

  10. G.T. Holmes et al., Light Metals 1980, ed. C.J. McMinn (Warrendale, PA: TMS, 1980), pp. 401–410.

    Google Scholar 

  11. S.R. Brandtzaeg and K.A. Paulsen, Light Metals 1998, ed. B.J. Welch (Warrendale, PA: TMS, 1998), pp. 603–606.

    Google Scholar 

  12. G. Bearne, Proceedings of the 6th Australasian Technology Workshop, ed. B.J. Welch and M. Skyllas-Kazacos (Sidney, Australia: U. of NSW, 1998), pp. 91–130.

    Google Scholar 

  13. W. Haupin, Light Metals 1998, ed. B.J. Welch (Warrendale, PA: TMS, 1998), pp. 531–537.

    Google Scholar 

  14. G.T. Holmes, Light Metals 1995, ed. J.W. Evans (Warrendale, PA: TMS, 1995), pp. 371–373.

    Google Scholar 

  15. B.J. Welch, Second International Alumina Quality Workshop (Perth, Australia:1990), pp. 15–22.

  16. W.E. Haupin J. of the Electrochem. Soc., March (1956), pp. 174–78.

  17. H.J. Meyer and D.G. Earley, Light Metals 1986, ed. R.E. Miller (Warrendale, PA: TMS 1986), pp. 365–370.

    Google Scholar 

  18. B.J. Welch, Austr. Institute of Min. & Met. Proceedings No. 214 (Carlton South, Australia: AusIMM, 1965), pp. 1–19.

    Google Scholar 

  19. H. Kvande et al., Light Metals 1997, ed. R. Huglen (Warrendale, PA: TMS, 1997), pp. 403–408.

    Google Scholar 

  20. “Reduction Cell Control System,” U.S. patent 3,622,475 (1968).

  21. “Alumina Feed Control,” U.S. patent 3,625,842 (1968).

  22. C.A. Wilson and A.T. Tabereaux, Light Metals 1983, ed. E.M. Adkins (Warrendale, PA: TMS, 1983), pp. 479–493.

    Google Scholar 

  23. “Process and Apparatus for Accurately Controlling the Rate of Introduction and the Content of Alumina in an Igneous Electrolysis Tank in the Production of Aluminum,” U.S. patent 4,431,491 (filed 1981).

  24. K.R. Robilliard and B. Rolofs, Light Metals 1989, ed. P.G. Campbell (Warrendale, PA: TMS, 1989), pp. 269–273.

    Google Scholar 

  25. X. Liu, Proceedings of the 5th Australasian Technology Workshop (Sidney, Australia: U. of NSW, 1995), pp. 619–625.

    Google Scholar 

  26. P.M. Entner, Light Metals 1996, ed. W. Hale (Warrendale, PA: TMS, 1996), pp. 445–449.

    Google Scholar 

  27. J.M. Peyneau, International Symposium on Reduction and Casting (New York: Pergaman Press, 1988), pp. 189–195.

    Google Scholar 

  28. D.J. Madsen, Light Metals 1992, ed. E. Cutshall (Warrendale, PA: TMS, 1992), pp. 453–456.

    Google Scholar 

  29. P. Desclaux, Light Metals 1987, ed. R.D. Zabreznik (Warrendale, PA: TMS, 1987), pp. 309–313.

    Google Scholar 

  30. C. Vanvoren, Aluminium Pechiney, best industrial result (private communication 1999).

  31. T. Saksvikroenning et al., Light Metals 1976, ed. S.R. Leavitt (New York: AIME, 1076), pp. 275–286.

    Google Scholar 

  32. E. Sorheim and P. Borg, Light Metals 1989, ed. P.G. Campbell (Warrendale, PA: TMS, 1989), pp. 379–384.

    Google Scholar 

  33. L. Tikasz and V. Potocnik, Light Metals 1990, ed. C.M. Bickert (Warrendale, PA: TMS, 1990), pp. 197–202.

    Google Scholar 

  34. W.K. Rolland et al., Light Metals 1991, ed. E.L. Rooy (Warrendale, PA: TMS, 1991), pp. 437–442.

    Google Scholar 

  35. F.J. Stevens et al., Light Metals 1992, ed. E. Cutshall (Warrendale, PA: TMS, 1992), pp. 541–547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Geoffrey P. Bearne is a manager in the Reduction Division of Comalco Research and Technical Support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bearne, G.P. The development of aluminum reduction cell process control. JOM 51, 16–22 (1999). https://doi.org/10.1007/s11837-999-0035-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-999-0035-5

Keywords

Navigation