Skip to main content
Log in

Lithium-intercalation oxides for rechargeable batteries

  • Overview
  • Light Metals
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Since the introduction of the LixC/LiCoO2 cell, rechargeable lithium batteries have become the technology of choice for applications where volume or weight are a consideration (e.g., laptop computers and cell phones). The focus of current research in cathodeactive materials is on less-expensive or higher-performance materials than LiCoO2. This article illustrates how first-principles calculations can play a critical role in obtaining the understanding needed to design improved cathode oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.S. Department of the Interior, Geological Survey Lithium (Washington, D.C.: U.S. Geological Survey, 1996).

    Google Scholar 

  2. H. Takeshita, Nomura Research Institute Ltd Report, Power 97 (consulting report 1997).

  3. D. Linden, Handbook of Batteries (New York: McGraw-Hill, 1994).

    Google Scholar 

  4. W. Xing and J.R. Dahn, J. of the Electrochem. Soc., 144 (1997), pp. 1195–1201.

    Article  CAS  Google Scholar 

  5. M.M. Thackeray, Prog. Solid. St. Chem., 25 (1997), pp. 1–71.

    Article  CAS  Google Scholar 

  6. G.G. Amatucci et al., J. of Power Sources, 69 (1997), pp. 11–25.

    Article  CAS  Google Scholar 

  7. Y. Gao and J.R. Dahn, Solid State Ionics, 84 (1996), pp. 33–40.

    Article  CAS  Google Scholar 

  8. T. Ohzuku and U. Atsushi, Solid State Ionics, 69 (1994), pp. 201–211.

    Article  CAS  Google Scholar 

  9. G.G. Amatucci, J.M. Tarascon, and L.C. Klein, J. Electrochem. Soc., 143 (1996), pp. 1114–1123.

    Article  CAS  Google Scholar 

  10. D. de Fontaine, Solid State Physics, vol. 47, eds. H. Ehrenreich and D. Turnbull (New York: Academic Press, 1994), pp. 33–176.

    Google Scholar 

  11. G. Ceder et al., J. of Electroceramics, 1 (1997), pp. 15–26.

    Article  CAS  Google Scholar 

  12. G. Ceder et al., J. of the Amer. Ceramics Soc., 81 (1998).

  13. A. Van der Ven, M.K. Aydinol, and G. Ceder, Mat. Res. Soc. Proc. (in press).

  14. M.K. Aydinol et al., Physical Review B, 56 (1997), pp. 1354–1365.

    Article  CAS  Google Scholar 

  15. W.R. McKinnon, Solid State Electrochemistry, ed. P.G. Bruce (New York: Cambridge University Press, 1995), pp. 163–198.

    Google Scholar 

  16. G. Kresse and J. Furthmüller, Comput. Mat. Sci., 6 (1996), p. 15.

    Article  CAS  Google Scholar 

  17. G. Ceder et al., Nature, 392 (1998), pp. 694–696.

    Article  CAS  Google Scholar 

  18. B. Zachau-Christiansen et al., Solid State Ionics, Diffusion & Reactions, 40/41 (1990), pp. 580–584.

    Article  Google Scholar 

  19. J.M. Tarascon et al., J. Electrochem. Soc., 138 (1991), pp. 2859–2864.

    Article  CAS  Google Scholar 

  20. J.N. Reimers and J.R. Dahn, J. Electrochem. Soc., 139 (1992), pp. 2091–2097.

    Article  CAS  Google Scholar 

  21. J.B. Goodenough et al., Revue de Chimie Minerale, 21 (1984), pp. 435–455.

    CAS  Google Scholar 

  22. T. Ohzuku and A. Ueda, J. Electr Soc., 141 (1994), pp. 2972–2977.

    Article  CAS  Google Scholar 

  23. J. van Elp et al., Phys. Rev. B, 44 (1991), pp. 6090–6103.

    Article  Google Scholar 

  24. J. Molenda, A. Stoklosa, and T. Bak, Solid State Ionics, Diffusion & Reactions, 36 (1989), pp. 53–58.

    Article  CAS  Google Scholar 

  25. A. Van der Ven et al., Phys. Rev. B 58 (1998), pp 2975–2987.

    Article  Google Scholar 

  26. H. Tukamoto and A.R. West, J. Electrochem. Soc., 144 (1997), pp. 3164–3168.

    Article  CAS  Google Scholar 

  27. A. Van der Ven, M.K. Aydinol, and G. Ceder, J. of the Electrochem. Soc., 145 (1998), pp. 2149–2155.

    Article  Google Scholar 

  28. G.G. Amatucci, J.M. Tarascon, and L.C. Klein, Solid State Ionics, 83 (1996), pp. 167–173.

    Article  CAS  Google Scholar 

  29. J.M. Tarascon et al., J. Electrochem. Soc., 141 (1994), pp. 1421–1431.

    Article  CAS  Google Scholar 

  30. D.H. Jang, Y.J. Shin, and S.M. Oh, J. of the Electrochem. Soc., 143 (1996), pp. 2204–2211.

    Article  CAS  Google Scholar 

  31. A. Blyr et al., J. of the Electrochem. Soc., 145 (1998), pp. 194–209.

    Article  CAS  Google Scholar 

Download references

Authors

Additional information

Gerbrand Ceder earned his Ph.D. in materials science and mineral engineering at the University of California at Berkeley in 1991. He is currently an associate professor at Massachusetts Institute of Technology. Dr. Ceder is a member of TMS.

Anton Van der Ven earned his M.Eng. in materials science at Katholieke Universiteit Leuven in 1994. He is currently a research assistant at Massachusetts Institute of Technology.

Mehmet Kadri Aydinol earned his Ph.D. in metallurgical engineering at Middle East Technical University in 1994. He is currently an assistant professor at Massachusetts Institute of Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceder, G., Van der Ven, A. & Aydinol, M.K. Lithium-intercalation oxides for rechargeable batteries. JOM 50, 35–40 (1998). https://doi.org/10.1007/s11837-998-0412-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-998-0412-5

Keywords

Navigation