Skip to main content
Log in

Modeling the recrystallization textures of aluminum alloys after hot deformation

  • Overview
  • Hot Deformation
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The recrystallization textures of aluminum alloys can be explained by a growth selection of grains with an approximate 40° 〈111〉 orientation relationship out of a limited spectrum of preferentially formed nucleus orientations. Accordingly, recrystallization textures can be modeled by the multiplication of a function f(g)nucl describing the probability of nucleation of the various orientations with a function f(g)grow representing their growth probability. Whereas the growth probability can be accounted for by a 40° 〈111〉 transformation of the rolling texture, the nucleation probability of the respective grains is given by the distribution of potential nucleus orientations, which is known from local texture analysis of rolled aluminum alloys to be cube bands, grain boundaries, and second-phase particles. The contributions of these nucleation sites are determined according to an approach to calculate the number of nuclei forming at each site, which is based on microstructural investigations of the evolution of the various nucleation sites during deformation. This article describes the model for recrystallization texture simulation in aluminum alloys and gives examples of recrystallization textures of AA3004 deformed in plane-strain compression at different deformation temperatures and strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Sellars, Mater Sci Technol., 1 (1985), pp. 325–332.

    CAS  Google Scholar 

  2. A. Laasraouni and J.J. Jonas, Metal. Trans., 22A (1991), pp. 151–160.

    Google Scholar 

  3. C.M. Sellars, Mater Sci Technol., 6 (1990), pp. 1072–1081.

    CAS  Google Scholar 

  4. G.C. Reyes and J.H. Beynon, Proc. Hot Deformation of Al-Alloys, eds. T.G. Langdon et al. (Warrendale, PA: TMS, 1991), pp. 491–508.

    Google Scholar 

  5. J. Hirsch, K. Karhausen, and R. Kopp, Proc. 4th Int. Conf. on Al-Alloys (ICAA4), eds. T.H. Sanders and E.A. Starke, vol. 1 (Atlanta, GA: Georgia Inst. of Tech., 1994), pp. 476–483.

    Google Scholar 

  6. C.M. Sellars et al., Proc. 15th Risø Int. Symp., eds. S.I. Andersen et al. (Roskilde: Risø Nat. Lab., 1994), pp. 109–133.

    Google Scholar 

  7. H.E. Vatne et al., Metall. Trans., 27A (1996), pp. 4133–4144.

    CAS  Google Scholar 

  8. D. Juul Jensen, N. Hansen, and F.J. Humphreys, Acta Metall., 33 (1985), pp. 2155–2162.

    Article  Google Scholar 

  9. O. Engler, H.E. Vatne, and E. Nes, Mat. Sci. Eng., A205 (1996), pp. 187–198.

    CAS  Google Scholar 

  10. H.J. Bunge, Texture Analysis in Materials Science (London: Butterworths 1982).

    Google Scholar 

  11. R.D. Doherty et al., Proc. ICOTOM 8, eds. J.S. Kallend and G. Gottstein (Warrendale, PA: TMS, 1988), pp. 563–572.

    Google Scholar 

  12. J. Hjelen, R. Ørsund, and E. Nes, Acta Metall. Mater., 39 (1991), pp. 1377–1404.

    Article  CAS  Google Scholar 

  13. H. Weiland, T.N. Rouns, and J. Liu, Z. Metallk., 85 (1994), pp. 592–597.

    CAS  Google Scholar 

  14. O. Engler, Mat. Sci. Tech., 12 (1996), pp. 859–872.

    CAS  Google Scholar 

  15. K. Lücke, Canad. Metall. Quart., 13 (1974), pp. 261–274.

    Google Scholar 

  16. D. Juul Jensen, Acta Metall. Mater., 43 (1995), pp. 4117–4129.

    Article  Google Scholar 

  17. O. Engler, Acta Mater., 46 (1998), pp. 1555–1568.

    Article  CAS  Google Scholar 

  18. O. Engler, Textures and Microstructures, 28 (1997), pp. 197–209.

    CAS  Google Scholar 

  19. H.E. Vatne et al., Acta Mater., 44 (1996), pp. 4463–4473.

    Article  CAS  Google Scholar 

  20. O. Engler, Textures and Microstructures (1998), in press.

  21. U. Köhler et al., Textures and Microstructures, 19 (1992), pp. 125–145.

    Google Scholar 

  22. J.J. Jonas, L.S. Tóth, and T. Urabe, Mat. Sci. Forum, 157–162 (1994), pp. 1713–1730.

    Article  Google Scholar 

  23. H. Weiland, and J. Hirsch, Textures and Microstructures, 14–18 (1991), pp. 647–652.

    Article  Google Scholar 

  24. R.D. Doherty et al., Proc. 16th Risø Int. Symp., eds. N. Hansen et al. (Roskilde: Risø Nat. Lab., 1995), pp. 1–23.

    Google Scholar 

  25. O. Daaland, and E. Nes, Acta Mater., 44 (1996), pp. 1389–1411.

    Article  CAS  Google Scholar 

  26. H.E. Vatne, R. Shahani, and E. Nes, Acta Mater., 44 (1996), pp. 4447–4462.

    Article  CAS  Google Scholar 

  27. O. Engler, P. Yang, and X.W. Kong, Acta Metall. Mater., 44 (1996), pp. 3349–3369.

    CAS  Google Scholar 

  28. H.E. Vatne et al., Proc. 16th Risø Int. Symp., eds. N. Hansen et al. (Roskilde: Risø Nat. Lab., 1995), pp. 573–579.

    Google Scholar 

  29. S.P. Bellier and R.D. Doherty, Acta Metall., 25 (1977), pp. 521–538.

    Article  CAS  Google Scholar 

  30. W.B. Hutchinson, Acta Metall., 37 (1989), pp. 1047–1056.

    Article  CAS  Google Scholar 

  31. F.J. Humphreys, Acta Metall., 25 (1977), pp. 1323–1344.

    Article  CAS  Google Scholar 

  32. E. Nes and W.B. Hutchinson, Proc. 10th Risø Int. Symp., eds. J.B. Bilde-Sørensen et al. (Roskilde: Risø Nat. Lab., 1989), pp. 233–249.

    Google Scholar 

  33. A. Oscarsson, Textures and Microstructures, 14–18 (1991), pp. 477–482.

    Google Scholar 

  34. O. Engler, X.W. Kong, and P. Yang, Scripta Mater., 37 (1997), pp. 1665–1674.

    Article  CAS  Google Scholar 

  35. O. Engler, Scripta Mater., 37 (1997), pp. 1675–1683.

    Article  CAS  Google Scholar 

  36. O. Engler, B. Mülders, and J. Hirsch, Z. Metallk., 87 (1996), pp. 454–464.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

O. Engler earned his Ph.D. in physical metallurgy at the University of Technology at Aachen, Germany, in 1990. He is currently a long-term visiting staff member at Los Alamos National Laboratory. Dr. Engler is a member of TMS.

H.E. Vatne earned his Ph.D. in physical metallurgy at the Norwegian Institute for Science and Technology, Trondheim, in 1995. He is currently a research scientist at Hydro Aluminum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engler, O., Vatne, H.E. Modeling the recrystallization textures of aluminum alloys after hot deformation. JOM 50, 23–27 (1998). https://doi.org/10.1007/s11837-998-0123-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-998-0123-y

Keywords

Navigation