Abstract
This study investigates the synthesis of hydroxyapatite nanoparticles via aqueous precipitation at pH 9 and Ca/P molar ratio of 1.67, exploring the effects of various synthesis parameters. Moreover, porous hydroxyapatite scaffolds were created using a pore-forming agent. These parameters’ effects on the crystal structure, chemical composition, morphology, porosity, and pore size of hydroxyapatite powders and porous scaffolds were determined by various analytical techniques such as x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), simultaneous thermal analysis (TGA/DSC), electron microscopy (SEM), pycnometry, and optical microscopy (OM). The XRD results revealed good crystallization of the hydroxyapatite with the formation of TCP and TTCP secondary phases resulting from the decomposition of hydroxyapatite (HA). The FTIR spectra of sintered HA confirmed the presence of the main absorption bands corresponding to phosphate and hydroxide groups with different peaks in intensity. The TGA/DSC analysis confirmed the results previously obtained by FTIR and XRD. SEM analysis showed the formation of various shapes of hydroxyapatite nanoparticles. According to different synthesis parameters, a porous HA scaffold up to 61% porosity can be prepared using ammonium bicarbonate as a pore-forming agent.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
Not applicable.
References
B. Aktas, R. Das, A. Acikgoz, G. Demircan, S. Yalcin, H.G. Aktas, and M.V. Balak, Mater. Today Commun. 38, 107872 https://doi.org/10.1016/j.mtcomm.2023.10787 (2024).
S.S. Raghavendra, G.R. Jadhav, K.M. Gathani, and P. Kotadia, J. Istanbul Univ. Fac. Dent. 51, 128 https://doi.org/10.17096/jiufd.63659 (2017).
D.D. Kiradzhiyska and R.D. Mantcheva, Folia Medica 61, 34 https://doi.org/10.2478/folmed-2018-0038 (2019).
B.H. Ibrahim and H. Al-Huwaizi, Int. J. Dent. https://doi.org/10.1155/2023/8717655 (2023).
G. Souad and C. Baghdadi, Mater. Res. Express 7, 015040 https://doi.org/10.1088/2053-1591/ab6260 (2020).
S.-W. Ha, H.L. Jang, K.T. Nam, and G.R. Beck Jr., Biomaterials 65, 32 https://doi.org/10.1016/j.biomaterials.2015.06.039 (2015).
M. Kheur, N. Kantharia, T. Iakha, S. Kheur, N.A.-H. Husain, and M. Özcan, Odontology. https://doi.org/10.1007/s10266-019-00427-5 (2019).
M.Z.A. Khiri, K.A. Matori, M.H.M. Zaid, C.A.C. Abdullah, N. Zainuddin, I.M. Alibe, N.A.A. Rahman, and S.A.A. Wahab, Ceram. Silik. 63, 194 https://doi.org/10.13168/cs.2019.0011 (2019).
S. Türk, İ Altınsoy, G.Ç. Efe, M. Ipek, M. Özacar, and C. Bindal, J. Bionic Eng. 16, 311 https://doi.org/10.1007/s42235-019-0026-3 (2019).
L. An, W. Li, Y. Xu, D. Zeng, Y. Cheng, and G. Wang, Ceram. Int. 42, 3104 https://doi.org/10.1016/j.ceramint.2015.10.099 (2016).
M. Jamil, B. Elouatli, H. Khallok, A. Elouahli, E. Gourri, M. Ezzahmouly, F. Abida, and Z. Hatim, J. Mater. Environ. Sci. 9, 2322 (2018).
A.C. Ferro and M. Guedes, Mater. Sci. Eng. C 97, 124 https://doi.org/10.1016/j.msec.2018.11.083 (2019).
S.M. Londoño-Restrepo, R. Jeronimo-Cruz, B.M. Millán-Malo, E.M. Rivera-Muñoz, and M.E. Rodriguez-García, Sci. Rep. 9, 5915 https://doi.org/10.1038/s41598-019-42269-9 (2019).
A. Yelten-Yilmaz and S. Yilmaz, Ceram. Int. 44, 9703 https://doi.org/10.1016/j.ceramint.2018.02.201 (2018).
V. Rodríguez-Lugo, T. Karthik, D. Mendoza-Anaya, E. Rubio-Rosas, L. Villaseñor Cerón, M. Reyes-Valderrama, and E. Salinas-Rodríguez, R. Soc. Open Sci. 5, 180962 https://doi.org/10.1098/rsos.180962 (2018).
S.S.A. Abidi and Q. Murtaza, J. Mater. Sci. Technol. 30, 307 https://doi.org/10.1016/j.jmst.2013.10.011 (2014).
M.H. Santos, M.D. Oliveira, L.P.D.F. Souza, H.S. Mansur, and W.L. Vasconcelos, Mater. Res. 7, 625 https://doi.org/10.1590/S1516-14392004000400017 (2004).
A. Afshar, M. Ghorbani, N. Ehsani, M. Saeri, and C. Sorrell, Mater. Des. 24, 197 https://doi.org/10.1016/S0261-3069(03)00003-7 (2003).
S. Kehoe, Optimisation of Hydroxyapatite (HAp) for Orthopaedic Application via the Chemical Precipitation Technique (Dublin City University, 2008).
F. Wu, J. Yang, X. Ke, S. Ye, Z. Bao, X. Yang, C. Zhong, M. Shen, S. Xu, and L. Zhang, Regen. Biomater. 9, 077 https://doi.org/10.1093/rb/rbab077 (2022).
B. Feng, Z. Jinkang, W. Zhen, L. Jianxi, C. Jiang, L. Jian, M. Guolin, and D. Xin, Biomed. Mater. 6, 015007 https://doi.org/10.1088/1748-6041/6/1/015007 (2011).
F.M. Klenke, Y. Liu, H. Yuan, E.B. Hunziker, K.A. Siebenrock, and W. Hofstetter, J. Biomed. Mater. Res. Part A 85, 777 https://doi.org/10.1002/jbm.a.31559 (2008).
E. Babaie and S.B. Bhaduri, ACS Biomater. Sci. Eng. 4, 1 https://doi.org/10.1021/acsbiomaterials.7b00615 (2018).
B. Charbonnier, C. Laurent, and D. Marchat, J. Eur. Ceram. Soc. 36, 4269 https://doi.org/10.1016/j.jeurceramsoc.2016.06.005 (2016).
C. Paredes, F.J. Martinez-Vazquez, H. Elsayed, P. Colombo, A. Pajares, and P. Miranda, J. Eur. Ceram. Soc. 41, 892 https://doi.org/10.1016/j.jeurceramsoc.2020.09.002 (2021).
H. Budharaju, S. Suresh, M.P. Sekar, B. De Vega, S. Sethuraman, D. Sundaramurthi, and D.M. Kalaskar, Mater. Des. 231, 112064 https://doi.org/10.1016/j.matdes.2023.112064 (2023).
E.A. Ofudje, A. Rajendran, A.I. Adeogun, M.A. Idowu, S.O. Kareem, and D.K. Pattanayak, Adv. Powder Technol. 29, 1 https://doi.org/10.1016/j.apt.2017.09.008 (2018).
E.A. Ofudje, A.I. Adeogun, M.A. Idowu, and S.O. Kareem, Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01716 (2019).
X. Zhao, A. Liu, L. Zhou, Z. Yang, S. Wei, Z. Zhao, Q. Fan, and L. Ma, J. Eur. Ceram. Soc. 42, 4396 https://doi.org/10.1016/j.jeurceramsoc.2022.04.012 (2022).
M. Trzaskowska, V. Vivcharenko, and A. Przekora, Int. J. Mol. Sci. 24, 5083 https://doi.org/10.3390/ijms24065083 (2023).
I.O. Smith, L.R. McCabe, and M.J. Baumann, Int. J. Nanomed. 1, 189 https://doi.org/10.2147/nano.2006.1.2.189 (2006).
Q. Chen, D. Mohn, and W.J. Stark, J. Am. Ceram. Soc. 94, 4184 https://doi.org/10.1111/j.1551-2916.2011.04766.x (2011).
S.H. Li, J.R. De Wijn, P. Layrolle, and K. De Groot, J. Biomed. Mater. Res. 61, 109 https://doi.org/10.1002/jbm.10163 (2002).
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical Approval
As corresponding author, S. Guerfi, I confirm on behalf of all authors that this manuscript has not been published, and it is not being submitted to any other journal.
Consent to Participate
I agree.
Consent to Publish
I agree.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Guerfi, S., Chouial, B., Bouzina, A. et al. Synthesis of Porous Bioceramic Scaffolds for Bone Tissue Engineering: Effects of Experimental Parameters. JOM 76, 5354–5364 (2024). https://doi.org/10.1007/s11837-024-06745-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-024-06745-6