Skip to main content
Log in

Synthesis of Porous Bioceramic Scaffolds for Bone Tissue Engineering: Effects of Experimental Parameters

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study investigates the synthesis of hydroxyapatite nanoparticles via aqueous precipitation at pH 9 and Ca/P molar ratio of 1.67, exploring the effects of various synthesis parameters. Moreover, porous hydroxyapatite scaffolds were created using a pore-forming agent. These parameters’ effects on the crystal structure, chemical composition, morphology, porosity, and pore size of hydroxyapatite powders and porous scaffolds were determined by various analytical techniques such as x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), simultaneous thermal analysis (TGA/DSC), electron microscopy (SEM), pycnometry, and optical microscopy (OM). The XRD results revealed good crystallization of the hydroxyapatite with the formation of TCP and TTCP secondary phases resulting from the decomposition of hydroxyapatite (HA). The FTIR spectra of sintered HA confirmed the presence of the main absorption bands corresponding to phosphate and hydroxide groups with different peaks in intensity. The TGA/DSC analysis confirmed the results previously obtained by FTIR and XRD. SEM analysis showed the formation of various shapes of hydroxyapatite nanoparticles. According to different synthesis parameters, a porous HA scaffold up to 61% porosity can be prepared using ammonium bicarbonate as a pore-forming agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Not applicable.

References

  1. B. Aktas, R. Das, A. Acikgoz, G. Demircan, S. Yalcin, H.G. Aktas, and M.V. Balak, Mater. Today Commun. 38, 107872 https://doi.org/10.1016/j.mtcomm.2023.10787 (2024).

    Article  Google Scholar 

  2. S.S. Raghavendra, G.R. Jadhav, K.M. Gathani, and P. Kotadia, J. Istanbul Univ. Fac. Dent. 51, 128 https://doi.org/10.17096/jiufd.63659 (2017).

    Article  Google Scholar 

  3. D.D. Kiradzhiyska and R.D. Mantcheva, Folia Medica 61, 34 https://doi.org/10.2478/folmed-2018-0038 (2019).

    Article  Google Scholar 

  4. B.H. Ibrahim and H. Al-Huwaizi, Int. J. Dent. https://doi.org/10.1155/2023/8717655 (2023).

    Article  Google Scholar 

  5. G. Souad and C. Baghdadi, Mater. Res. Express 7, 015040 https://doi.org/10.1088/2053-1591/ab6260 (2020).

    Article  Google Scholar 

  6. S.-W. Ha, H.L. Jang, K.T. Nam, and G.R. Beck Jr., Biomaterials 65, 32 https://doi.org/10.1016/j.biomaterials.2015.06.039 (2015).

    Article  Google Scholar 

  7. M. Kheur, N. Kantharia, T. Iakha, S. Kheur, N.A.-H. Husain, and M. Özcan, Odontology. https://doi.org/10.1007/s10266-019-00427-5 (2019).

    Article  Google Scholar 

  8. M.Z.A. Khiri, K.A. Matori, M.H.M. Zaid, C.A.C. Abdullah, N. Zainuddin, I.M. Alibe, N.A.A. Rahman, and S.A.A. Wahab, Ceram. Silik. 63, 194 https://doi.org/10.13168/cs.2019.0011 (2019).

    Article  Google Scholar 

  9. S. Türk, İ Altınsoy, G.Ç. Efe, M. Ipek, M. Özacar, and C. Bindal, J. Bionic Eng. 16, 311 https://doi.org/10.1007/s42235-019-0026-3 (2019).

    Article  Google Scholar 

  10. L. An, W. Li, Y. Xu, D. Zeng, Y. Cheng, and G. Wang, Ceram. Int. 42, 3104 https://doi.org/10.1016/j.ceramint.2015.10.099 (2016).

    Article  Google Scholar 

  11. M. Jamil, B. Elouatli, H. Khallok, A. Elouahli, E. Gourri, M. Ezzahmouly, F. Abida, and Z. Hatim, J. Mater. Environ. Sci. 9, 2322 (2018).

    Google Scholar 

  12. A.C. Ferro and M. Guedes, Mater. Sci. Eng. C 97, 124 https://doi.org/10.1016/j.msec.2018.11.083 (2019).

    Article  Google Scholar 

  13. S.M. Londoño-Restrepo, R. Jeronimo-Cruz, B.M. Millán-Malo, E.M. Rivera-Muñoz, and M.E. Rodriguez-García, Sci. Rep. 9, 5915 https://doi.org/10.1038/s41598-019-42269-9 (2019).

    Article  Google Scholar 

  14. A. Yelten-Yilmaz and S. Yilmaz, Ceram. Int. 44, 9703 https://doi.org/10.1016/j.ceramint.2018.02.201 (2018).

    Article  Google Scholar 

  15. V. Rodríguez-Lugo, T. Karthik, D. Mendoza-Anaya, E. Rubio-Rosas, L. Villaseñor Cerón, M. Reyes-Valderrama, and E. Salinas-Rodríguez, R. Soc. Open Sci. 5, 180962 https://doi.org/10.1098/rsos.180962 (2018).

    Article  Google Scholar 

  16. S.S.A. Abidi and Q. Murtaza, J. Mater. Sci. Technol. 30, 307 https://doi.org/10.1016/j.jmst.2013.10.011 (2014).

    Article  Google Scholar 

  17. M.H. Santos, M.D. Oliveira, L.P.D.F. Souza, H.S. Mansur, and W.L. Vasconcelos, Mater. Res. 7, 625 https://doi.org/10.1590/S1516-14392004000400017 (2004).

    Article  Google Scholar 

  18. A. Afshar, M. Ghorbani, N. Ehsani, M. Saeri, and C. Sorrell, Mater. Des. 24, 197 https://doi.org/10.1016/S0261-3069(03)00003-7 (2003).

    Article  Google Scholar 

  19. S. Kehoe, Optimisation of Hydroxyapatite (HAp) for Orthopaedic Application via the Chemical Precipitation Technique (Dublin City University, 2008).

    Google Scholar 

  20. F. Wu, J. Yang, X. Ke, S. Ye, Z. Bao, X. Yang, C. Zhong, M. Shen, S. Xu, and L. Zhang, Regen. Biomater. 9, 077 https://doi.org/10.1093/rb/rbab077 (2022).

    Article  Google Scholar 

  21. B. Feng, Z. Jinkang, W. Zhen, L. Jianxi, C. Jiang, L. Jian, M. Guolin, and D. Xin, Biomed. Mater. 6, 015007 https://doi.org/10.1088/1748-6041/6/1/015007 (2011).

    Article  Google Scholar 

  22. F.M. Klenke, Y. Liu, H. Yuan, E.B. Hunziker, K.A. Siebenrock, and W. Hofstetter, J. Biomed. Mater. Res. Part A 85, 777 https://doi.org/10.1002/jbm.a.31559 (2008).

    Article  Google Scholar 

  23. E. Babaie and S.B. Bhaduri, ACS Biomater. Sci. Eng. 4, 1 https://doi.org/10.1021/acsbiomaterials.7b00615 (2018).

    Article  Google Scholar 

  24. B. Charbonnier, C. Laurent, and D. Marchat, J. Eur. Ceram. Soc. 36, 4269 https://doi.org/10.1016/j.jeurceramsoc.2016.06.005 (2016).

    Article  Google Scholar 

  25. C. Paredes, F.J. Martinez-Vazquez, H. Elsayed, P. Colombo, A. Pajares, and P. Miranda, J. Eur. Ceram. Soc. 41, 892 https://doi.org/10.1016/j.jeurceramsoc.2020.09.002 (2021).

    Article  Google Scholar 

  26. H. Budharaju, S. Suresh, M.P. Sekar, B. De Vega, S. Sethuraman, D. Sundaramurthi, and D.M. Kalaskar, Mater. Des. 231, 112064 https://doi.org/10.1016/j.matdes.2023.112064 (2023).

    Article  Google Scholar 

  27. E.A. Ofudje, A. Rajendran, A.I. Adeogun, M.A. Idowu, S.O. Kareem, and D.K. Pattanayak, Adv. Powder Technol. 29, 1 https://doi.org/10.1016/j.apt.2017.09.008 (2018).

    Article  Google Scholar 

  28. E.A. Ofudje, A.I. Adeogun, M.A. Idowu, and S.O. Kareem, Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01716 (2019).

    Article  Google Scholar 

  29. X. Zhao, A. Liu, L. Zhou, Z. Yang, S. Wei, Z. Zhao, Q. Fan, and L. Ma, J. Eur. Ceram. Soc. 42, 4396 https://doi.org/10.1016/j.jeurceramsoc.2022.04.012 (2022).

    Article  Google Scholar 

  30. M. Trzaskowska, V. Vivcharenko, and A. Przekora, Int. J. Mol. Sci. 24, 5083 https://doi.org/10.3390/ijms24065083 (2023).

    Article  Google Scholar 

  31. I.O. Smith, L.R. McCabe, and M.J. Baumann, Int. J. Nanomed. 1, 189 https://doi.org/10.2147/nano.2006.1.2.189 (2006).

    Article  Google Scholar 

  32. Q. Chen, D. Mohn, and W.J. Stark, J. Am. Ceram. Soc. 94, 4184 https://doi.org/10.1111/j.1551-2916.2011.04766.x (2011).

    Article  Google Scholar 

  33. S.H. Li, J.R. De Wijn, P. Layrolle, and K. De Groot, J. Biomed. Mater. Res. 61, 109 https://doi.org/10.1002/jbm.10163 (2002).

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Souad Guerfi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

As corresponding author, S. Guerfi, I confirm on behalf of all authors that this manuscript has not been published, and it is not being submitted to any other journal.

Consent to Participate

I agree.

Consent to Publish

I agree.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerfi, S., Chouial, B., Bouzina, A. et al. Synthesis of Porous Bioceramic Scaffolds for Bone Tissue Engineering: Effects of Experimental Parameters. JOM 76, 5354–5364 (2024). https://doi.org/10.1007/s11837-024-06745-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06745-6

Navigation