Skip to main content
Log in

Microwave Heating and Curing of Joined Carbon Fiber Composites

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In pursuit of superior joint strengths in carbon fiber-reinforced plastics (CFRPs), this work employed T800 carbon fiber/epoxy prepreg combined with adhesive film as the interlayer, cured using microwave technology. Dielectric constants remain impervious to significant shifts during the microwave-induced curing of the T800 carbon fiber/epoxy prepreg and adhesive film. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) confirmed that the cured products of varying layup thicknesses exhibited consistency, with the T800 carbon fiber/epoxy prepreg and the adhesive film all stemming from the same bisphenol A (BPA) resin system. Electron microscopy revealed similar bonding strengths across the five evaluated samples. Comprehensive assessments of static tensile and flexural behaviors were undertaken for diverse CFRP samples post-joining. Notably, a positive correlation between adhesive layer thickness and both tensile strength and three-point bending strength was observed. Specifically, Sample 5 manifested the peak tensile strength and three-point bending strength, registering at 258.16 MPa and 668.82 MPa, respectively. Contrastingly, Sample 2 boasted the maximal three-point bending modulus of 668.82 GPa, while Sample 3 achieved the zenith tensile modulus at 85.16 GPa. Based on observed experimental outcomes, bifurcated tensile and three-point bending failure models for the samples have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Frketic, T. Dickens, and S. Ramakrishnan, Addit. Manuf. 14, 69 (2017).

    Google Scholar 

  2. C. Soutis, Prog. Aerosp. Sci. 41, 143 (2005).

    Article  Google Scholar 

  3. A. Al-Lami, P. Hilmer, and M. Sinapius, Aerosp. Sci. Technol. 79, 669 (2018).

    Article  Google Scholar 

  4. M. Subhani, A. Globa, R. Al-Ameri, and J. Moloney, Constr. Build. Mater. 150, 480 (2017).

    Article  Google Scholar 

  5. R. Kumar, P.K. Agrawal, and I. Singh, J. Manuf. Process. 31, 859 (2018).

    Article  Google Scholar 

  6. J. Zhang, G. Lin, U. Vaidya, and H. Wang, Compos. B Eng. 250, 110463 (2023).

    Article  Google Scholar 

  7. Y.F. Khalil, Sustain. Prod. Consump. 12, 16 (2017).

    Article  Google Scholar 

  8. J.C. Williams and R.R. Boyer, Metals 10, 66 (2020).

    Article  Google Scholar 

  9. H. Dutta, K. Debnath, and D.K. Sarma, Polym. Compos. 40, 4033 (2019).

    Article  Google Scholar 

  10. V.K. Rangari, M.S. Bhuyan, and S. Jeelani, Compos. A Appl. Sci. Manuf. 42, 849 (2011).

    Article  Google Scholar 

  11. A. Haque, M. Shamsuzzoha, F. Hussain, and D. Dean, J. Compos. Mater. 37, 1821 (2003).

    Article  Google Scholar 

  12. S.C. Hendy and I.W.M. Brown, Curr. Appl. Phys. 8, 223 (2008).

    Article  Google Scholar 

  13. M. Trihotri, U.K. Dwivedi, F.H. Khan, M.M. Malik, and M.S. Qureshi, J. Non-Cryst. Solids 421, 1 (2015).

    Article  Google Scholar 

  14. A. Pramanik, A.K. Basak, Y. Dong, P.K. Sarker, M.S. Uddin, G. Littlefair, A.R. Dixit, and S. Chattopadhyaya, Compos. Pt. A-Appl. Sci. Manuf. 101, 1 (2017).

    Article  Google Scholar 

  15. F. Lambiase and D.C. Ko, Mater. Des. 107, 341 (2016).

    Article  Google Scholar 

  16. M. Mariam, M. Afendi, M.S.A. Majid, M.J.M. Ridzuan, and A.G. Gibson, Compos. Struct. 200, 647 (2018).

    Article  Google Scholar 

  17. P. Galvez, J. Abenojar, and M.A. Martinez, Compos. Pt. B-Eng. 165, 1 (2019).

    Article  Google Scholar 

  18. M.A. Karatas and H. Gokkaya, Defen. Technol. 14, 318 (2018).

    Article  Google Scholar 

  19. G.D. Goh, V. Dikshit, A.P. Nagalingam, G.L. Goh, S. Agarwala, S.L. Sing, J. Wei, and W.Y. Yeong, Mater. Des. 137, 79 (2018).

    Article  Google Scholar 

  20. D.F. Liu, Y.J. Tang, and W.L. Cong, Compos. Struct. 94, 1265 (2012).

    Article  Google Scholar 

  21. D. Dolkun, H. Wang, H. Wang, and Y. Ke, Appl. Compos. Mater. 27, 811 (2020).

    Article  Google Scholar 

  22. D. Abliz, Y.G. Duan, L. Steuernagel, L. Xie, D.C. Li, and G. Ziegmann, Polym. Polym. Compos. 21, 341 (2013).

    Google Scholar 

  23. M. Chen, E.J. Siochi, T.C. Ward, and J.E. McGrath, Polym. Eng. Sci. 33, 1092 (1993).

    Article  Google Scholar 

  24. B.K. Rajeshwar, I. Jang, and C. Yi, Constr. Build. Mater. 218, 681 (2019).

    Article  Google Scholar 

  25. C.E. Cruz-Gonzalez, J.D. Mosquera-Artamonov, S.D. Santillan, and H. Gamez-Cuatzin, Revista De Metalurgia 54, 66 (2018).

    Article  Google Scholar 

  26. P. Silva-Bermudez, S. Muhl, and S.E. Rodil, Appl. Surf. Sci. 282, 351 (2013).

    Article  Google Scholar 

  27. X.Y. Liu, J.C. Wu, J.J. Xi, and Z.Q. Yu, Materials 12, 66 (2019).

    Google Scholar 

  28. K.H. Chen, G.Z. Zhao, J. Chen, X.B. Zhu, and S.H. Guo, Materials 16, 15 (2023).

    Google Scholar 

  29. J. Peng and H. Xia, Microwave Metallurgy (Science Press, Beijing, 2017).

    Google Scholar 

  30. B. Sehar, A. Waris, and S.O. Gilani, Crystals 12(10), 1429 (2022).

    Article  Google Scholar 

  31. Y.-C. Cheng, C.-M. Wu, and P.-C. Lin, Mod. Phys. Lett. B 34, 07 (2020).

    Google Scholar 

  32. J.Y. Deng, L. Xu, L.B. Zhang, J.H. Peng, S.H. Guo, J.H. Liu, and S. Koppala, Processes 7, 12 (2019).

    Article  Google Scholar 

  33. M.B. Vazquez-Santos, E. Geissler, K. Laszlo, J.N. Rouzaud, A. Martinez-Alonso, and J.M.D. Tascon, J. Phys. Chem. C 116, 257 (2012).

    Article  Google Scholar 

  34. S. Dai, Advanced Fiber Reinforced Composites (East China University of Science and Technology Press, Shanghai, 2013).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the China Petrochemical Corporation (Sinopec Group) (Grant Numbers: GFS21-L3-009, and 219025-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenghui Guo or Ming Hou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Chen, K., Gao, L. et al. Microwave Heating and Curing of Joined Carbon Fiber Composites. JOM (2024). https://doi.org/10.1007/s11837-024-06629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06629-9

Navigation