Skip to main content
Log in

Study of Turbulent Behavior and Particle Flight Characteristics Based on Different Turbulence Models During HVOF Spraying

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-velocity oxygen fuel (HVOF) thermal spraying technology has been widely used to prepare anti-corrosion and wear-resistant coatings. In this study, the compressible turbulent flow, combustion reaction, and particle flight characteristics in a JP8000 spray gun were calculated. The turbulence models of realizable kε, RSM, and SST kω were analyzed and compared. Based on the realizable kε model, the effects of particles for incidence velocity, incidence angle, and shape on particle flight behavior during spraying are discussed in detail. The results show that the realizable kε model predicts that the surface pressure effect at the particle inlet is obvious and that the local turbulence intensity is relatively high. The combustion reaction predicted by the RSM model occurs relatively slowly, is concentrated in the back part of the combustion chamber, and takes into account the accumulation of oxygen concentration. When the particle incidence angle is − 45° and the injection velocity is 10–20 m/s, the flight path is closer to the gun axis, which is conducive to particle heating and acceleration. Particle morphology has a significant effect on flight behavior, particles with low shape factor should be selected for their large size, and particles with a high shape factor should be selected for their small size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Jafari, S. Emami, and Y. Mahmoudi, Appl. Therm. Eng. 111, 745 (2017).

    Article  Google Scholar 

  2. M. Abbas, G.M. Smith, and P.R. Munroe, Surf. Coat. Technol. 394, 125909 (2020).

    Article  Google Scholar 

  3. M. Abbas, G.M. Smith, and P.R. Munroe, Surf. Coat. Technol. 409, 126832 (2021).

    Article  Google Scholar 

  4. J. Pan, S. Hu, L. Yang, K. Ding, and B. Ma, Mater. Des. 96, 370 (2016).

    Article  Google Scholar 

  5. A.A. Abubakar, A.F.M. Akhtar, S.S. Akhtar, and J. Mostaghimi, J. Therm. Spray Technol. 28(3), 359 (2019).

    Article  Google Scholar 

  6. G. Wang, Z. Huang, P. Xiao, and X. Zhu, J. Manuf. Process. 22, 34 (2016).

    Article  Google Scholar 

  7. S.L. Liu, X.P. Zheng, and G.Q. Geng, Wear 269, 362 (2010).

    Article  Google Scholar 

  8. S. Vijay, L. Wang, C. Lyphout, P. Nylen, and N. Markocsan, Appl. Surf. Sci. 493, 956 (2019).

    Article  Google Scholar 

  9. E. Dongmo, M. Wenzelburger, and R. Gadow, Surf. Coat. Technol. 202, 4470 (2008).

    Article  Google Scholar 

  10. J.S. Baik and Y.J. Kim, Surf. Coat. Technol. 202, 5457 (2008).

    Article  Google Scholar 

  11. S. Kamnis, S. Gu, T.J. Lu, and C. Chen, Comput. Mater. Sci. 43, 1172 (2008).

    Article  Google Scholar 

  12. H. Tabbara, S. Gu, and D.G. McCartney, Comput. Fluids 44, 358 (2011).

    Article  Google Scholar 

  13. X. Wang, Q. Song, and Z. Yu, J. Therm. Spray Technol. 25, 441 (2015).

    Article  Google Scholar 

  14. S. Emami, H. Jafari, and Y. Mahmoudi, J. Therm. Spray Technol. 28(3), 333 (2019).

    Article  Google Scholar 

  15. C. Li, X. Gao, Y. Yang, X. Chen, and X. Han, Therm. Spray Technol 31(3), 585 (2022).

    Article  Google Scholar 

  16. X. Gao, C. Li, Y. Xu, X. Chen, and X. Han, J. Therm. Spray Technol. 30(7), 1875 (2021).

    Article  Google Scholar 

  17. H.R. Jiang, M.L. Wei, X.S. Ma, and T.C. Dong, J. Therm. Spray Technol. 28(6), 1146 (2019).

    Article  Google Scholar 

  18. H. Tabbara and S. Gu, AlChE J. 58, 3533 (2012).

    Article  Google Scholar 

  19. J. Yu, X. Liu, Y. Yu, Z. Li, S. Xu, H. Li, P. Liu, and L. Wang, J. Therm. Spray Technol. 31, 2448 (2022).

    Article  Google Scholar 

  20. S. Gu and S. Kamnis, Chem. Eng. Process. 45, 246 (2005).

    Google Scholar 

  21. M.N. Khan and T. Shamim, Appl. Energ. 130, 853 (2014).

    Article  Google Scholar 

  22. B.F. Magnussen and B.H. Hjertager, Nor. Inst. Technol. 16, 719 (1977).

    Google Scholar 

  23. B.F. Magnussen, B.H. Hjertager, J.G. Olsen, and D. Bhaduri, Central Mechan. Eng. Res. Inst. 17, 1383 (1979).

    Google Scholar 

  24. S. Kamnis and S. Gu, Chem. Eng. Sci. 61(16), 5427 (2006).

    Article  Google Scholar 

  25. K. Kundu, P. Penko, S. Yang, 36th AIAA Aerospace Sciences Meeting and Exhibit (1998)

  26. X. Zhao, C. Li, S. Li, X. Han, and P. Liu, Appl. Therm. Eng. 241, 122405 (2024).

    Article  Google Scholar 

  27. X. Zhao, C. Li, S. Li, H. Jiang, and X. Han, Surf. Coat. Technol. 461, 129435 (2023).

    Article  Google Scholar 

  28. M. Li and P.D. Christofides, Chem. Eng. Sci. 60(13), 3649 (2005).

    Article  Google Scholar 

  29. M.N. Khan and T. Shamim, Appl. Energy 130, 853 (2014).

    Article  Google Scholar 

  30. F. Liu, Z. Li, M. Fang, and H. Hou, Materials 14(3), 657 (2021).

    Article  Google Scholar 

  31. S. Liu, H. Wu, S. Xie, M.P. Planche, D. Rivolet, M. Moliere, and H. Liao, Surf. Coat. Technol. 408, 126805 (2021).

    Article  Google Scholar 

  32. L. Qiao, Y. Wu, S. Hong, J. Cheng, and Z. Wei, Surf. Coat. Technol. 366, 296 (2019).

    Article  Google Scholar 

  33. M. Jadidi, S. Moghtaderenjad, and A. Dolatabadi, J. Therm. Spray Technol. 25(3), 451 (2016).

    Article  Google Scholar 

Download references

Funding

This work was supported by “Applied Basic Research Program of Liaoning Province” (2023JH2/101300226), and “Project for Graduate Education Reform and Technological Innovation and Entrepreneurship of University of Science and Technology Liaoning” (2023YJSCX02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this study

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, C., Liu, P. et al. Study of Turbulent Behavior and Particle Flight Characteristics Based on Different Turbulence Models During HVOF Spraying. JOM (2024). https://doi.org/10.1007/s11837-024-06617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06617-z

Navigation