Skip to main content
Log in

Effect of Cryorolling and Aging Treatment on Erichsen Formability of AA7075 Sheets at Room and Cryogenic Temperatures

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To explore the effect of deformation temperature and subsequent heat treatment on the materials’ formability, AA7075 sheets were prepared by cryorolling (− 196°C) and room-temperature rolling, associated with subsequent peak aging treatment at 100°C for 40 h. Erichsen tests were carried out on samples with different thicknesses. At the same reduction rate, the Erichsen height of cryorolled samples was obviously higher than that of room-temperature rolled samples. As the reduction rate reached 80%, the Erichsen value of cryorolled samples was 0.87 mm higher than room-temperature rolled samples. After peak aging treatment, the Erichsen height values of cryorolled + peak aged and room-temperature rolled + peak aged samples increased greatly. Specially, the Erichsen value of cryorolled + peak aged samples with the same reduction was 0.3–0.6 mm higher than that of room-temperature rolled + peak aged samples. In addition, for the samples of cryorolled, room-temperature rolled, cryorolled + peak aged and room-temperature rolled + peak aged, their cryogenic Erichsen heights are all higher than room-temperature Erichsen heights. Compared to room-temperature Erichsen heights of room-temperature rolled samples, the increasing rates of cryogenic Erichsen heights of cryorolled samples are in the range of 13–117%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. B. Zhou, B. Liu, S.G. Zhang, R. Lin, Y. Jiang, and X.Y. Lan, J. Alloys Compd. 879, 160407 (2021).

    Article  Google Scholar 

  2. Y.X. Feng, J. Liu, and C. An, Mater. Guide 18(8A), 196 (2004).

    Google Scholar 

  3. B. Liu, C.Q. Peng, R.C. Wang, X.F. Wang, and T.T. Li, Chin. J. Nonferr. Met. 20, 1705 (2010).

    Google Scholar 

  4. Y.S. Lee, D.H. Kou, H.W. Kin, and Y.S. Ahn, Scr. Mater. 147, 45 (2018).

    Article  Google Scholar 

  5. M.M. Shahzamanian, M. Parsazadeh, and P.D. Wu, Int. J. Solid Struct. 286–287, 112558 (2024).

    Article  Google Scholar 

  6. Z.H. Du, Z.S. Deng, A. Xiao, X.H. Cui, H.L. Yu, and Z.Z. Feng, J. Manuf. Process. 70, 15 (2021).

    Article  Google Scholar 

  7. H. Li, P. Chen, Z.X. Wang, F. Zhu, R.G. Song, and Z.Q. Zheng, Mater. Sci. Eng. A 742, 798 (2019).

    Article  Google Scholar 

  8. S. Zhang, X. Luo, G.Y. Zheng, N.Z. Zhai, Y.Q. Yang, and P.T. Li, Mater. Sci. Eng. A 832, 142482 (2022).

    Article  Google Scholar 

  9. L.H. Su, C. Lu, G.Y. Deng, and K. Tieu, Metall. Mater. Trans. B 45, 515 (2014).

    Article  Google Scholar 

  10. N. Nie, L.H. Su, G.Y. Deng, H.J. Li, H.L. Yu, and K. Tieu, J. Mater. Res. Tech. 15, 6574 (2021).

    Article  Google Scholar 

  11. H.L. Li, A.H. Guo, C. Kong, and H.LYu. Mater, Sci. Eng. A 891, 146007 (2024).

    Article  Google Scholar 

  12. L.H. Su, G.Y. Deng, V. Luzin, H. Wang, Z.Y. Wang, H.L. Yu, H.J. Li, and A.K. Tieu, Mater. Sci. Eng. A 780, 139190 (2020).

    Article  Google Scholar 

  13. G.Y. Deng, C. Lu, A.K. Tieu, L.H. Su, N.N. Huynh, and X.H. Liu, J. Mater. Sci. 45, 4711 (2010).

    Article  Google Scholar 

  14. G.Y. Deng, C. Lu, L.H. Su, A.K. Tieu, J.T. Li, M. Liu, H.T. Zhu, and X.H. Liu, Comp. Mater. Sci. 81, 79 (2014).

    Article  Google Scholar 

  15. P.T. Wei, C. Lu, K. Tieu, L.H. Su, G.Y. Deng, and W.B. Huang, Mater. Sci. Eng. A 684, 239 (2017).

    Article  Google Scholar 

  16. H. Kim, H. Ha, J. Lee, S. Son, H.S. Kim, H. Sung, J.B. Seol, and J.G. Kim, Mater. Sci. Eng. A 810, 141020 (2021).

    Article  Google Scholar 

  17. K. Lu, Metall. Mater. Trans. A 55, 1 (2024).

    Article  Google Scholar 

  18. Z.D. Li, H. Gu, K.G. Luo, C. Kong, and H.L. Yu, Engineering. https://doi.org/10.1016/j.eng.2023.01.019 (2023).

    Article  Google Scholar 

  19. H.Q. Xiong, L.H. Su, C. Kong, and H.LYu. Adv. Eng. Mater. 23, 2001533 (2021).

    Article  Google Scholar 

  20. S.S. Yang, Z.D. Li, Y.X. Zhou, C. Kong, and H.L. Yu, J. Alloys Compd. 931, 167556 (2023).

    Article  Google Scholar 

  21. H.L. Yu, C. Lu, A.K. Tieu, and S.H. Zhang, Adv. Eng. Mater. 18, 754–769 (2016).

    Article  Google Scholar 

  22. Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu, Adv. Mater. 18, 2949 (2006).

    Article  Google Scholar 

  23. H. Gu, L. Bhatta, H.T. Gao, Z.D. Li, C. Kong, and H.LYu. Mater, Sci. Eng. A 843, 143141 (2022).

    Article  Google Scholar 

  24. F.L. Yu, C. Kong, and H.L. Yu, Tungsten 5, 522 (2023).

    Article  Google Scholar 

  25. L. Wang, D.L. Tang, C. Kong, and H.L. Yu, Materialia 21, 101283 (2022).

    Article  Google Scholar 

  26. H.L. Yu, L. Wang, L.J. Chai, J.T. Li, C. Lu, A. Godbole, H. Wang, and C. Kong, Mater Charact 153, 34 (2019).

    Article  Google Scholar 

  27. H.L. Yu, C. Lu, K. Tieu, H.J. Li, A. Godbole, X. Liu, and C. Kong, J. Mater. Res. 32, 3761 (2017).

    Article  Google Scholar 

  28. H.L. Yu, China Mech. Eng. 31(1), 89 (2020).

    Google Scholar 

  29. S.K. Panigrahi, and R. Jayaganthan, J. Alloys Compd. 509, 9609–9616 (2011).

    Article  Google Scholar 

  30. J. Luo, H. Lou, S. Li, R. Wang, and Y. Ma, Mater. Des. 187, 108402 (2020).

    Article  Google Scholar 

  31. D. Jia, K.T. Ramesh, and E. Ma, Acta Mater. 51, 3495–3509 (2003).

    Article  Google Scholar 

  32. C. Zhou, L. Zhan, and C. Liu, M. Huang. iScience 26, 106870 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the High-tech Industry Technology Innovation Leading Plan of Hunan Province (Grant No. 2022GK4032), the Innovation Driven Program of CSU (no. 2019CX006), and the Research Fund of the State Key Laboratory of Precision Manufacturing for Extreme Service Performance at Central South University for the financial support. The authors also thank to Mr. Shisen Yang at Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that will affect the reporting in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Gao, H., Huang, Y. et al. Effect of Cryorolling and Aging Treatment on Erichsen Formability of AA7075 Sheets at Room and Cryogenic Temperatures. JOM (2024). https://doi.org/10.1007/s11837-024-06613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06613-3

Navigation