Skip to main content
Log in

Anode Process on Gold in KF-AlF3-Al2O3 Melt

  • Aluminum: Eliminating GHG Emissions
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Currently, the development of oxygen-evolving anodes for eco-friendly technologies to produce important metals and alloys by electrolysis of molten salts seems to be an urgent task. To determine the degree of “inertness” of a particular anode material, data on the kinetics and mechanism of the anode process on an ideal material not subject to oxidation are required. In this connection, the anode process on gold in the low-temperature KF-AlF3-Al2O3 melt for electrolytic aluminum production was investigated in this work by cyclic and square-wave voltammetry methods. The influence of temperature (715 and 775°C) of the melt, the content of Al2O3 in it (from 0.1 to saturation), as well as the polarization rate (0.05–1 V s−1) on the kinetics and some features of the mechanism of the investigated process was determined. An assumption is made that oxygen release on gold without dissolution of the substrate takes place in the region of overvoltages from 0 to 0.8 V. It is shown that the process includes the stages of electrochemical adsorption and desorption of the intermediate product, the first of which is limited by the diffusion of electroactive anions to the anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Yang, Sh. Jiang, Y. Liu, J. Chen, D. Wang, Yu. Zaikov, L. Wang, Zh. Chai, and W. Shi, J. Radioanal. Nucl. Chem. 332, 1377 https://doi.org/10.1007/s10967-023-08782-y (2023).

    Article  Google Scholar 

  2. A. Galashev, K. Abramova, A. Vorobev, O. Rakhmanova, and Y. Zaikov, Electrochem. Mater. Technol. 2, 20232017 https://doi.org/10.15826/elmattech.2023.2.017 (2023).

    Article  Google Scholar 

  3. A. Verma, A. Singh, and A. Colclasure, JOM 76, 1171 https://doi.org/10.1007/s11837-023-06274-8 (2024).

    Article  Google Scholar 

  4. A. Demin, and D. Bronin, Electrochem. Mater. Technol. 2, 20232016 https://doi.org/10.15826/elmattech.2023.2.016 (2023).

    Article  Google Scholar 

  5. W. Liu, D. Zhou, and Zh. Zhao, JOM 71, 2420 https://doi.org/10.1007/s11837-019-03487-8 (2019).

    Article  Google Scholar 

  6. W. Gu, J. Diao, J. Wang, H. Li, and B. Xie, JOM 75, 1731 https://doi.org/10.1007/s11837-023-05757-y (2023).

    Article  Google Scholar 

  7. L. Dion, L.I. Kiss, S. Poncsák, and Ch. Lagacé, JOM 68, 2472 https://doi.org/10.1007/s11837-016-2043-6 (2016).

    Article  Google Scholar 

  8. J.W. Evans, JOM 59(5), 30 https://doi.org/10.1007/s11837-007-0020-9 (2007).

    Article  Google Scholar 

  9. A.V. Mikhaylovskaya, A.D. Kotov, R. Yu Barkov, O.A. Yakovtseva, M.V. Glavatskikh, I.S. Loginova, and A.V. Pozdniakov, JOM 76, 1821 https://doi.org/10.1007/s11837-023-06214-6 (2024).

    Article  Google Scholar 

  10. A. Du, L. Lattanzi, A.E. Jarfors, J. Zheng, K. Wang, and G. Yu, Crystals 13(12), 1621 https://doi.org/10.3390/cryst13121621 (2023).

    Article  Google Scholar 

  11. A.S. Lebedev, V.E. Eremyashev, A.V. Suzdaltsev, and V.N. Anfilogov, Russ. Met. (Met.) 2020(6), 686 https://doi.org/10.1134/S0036029520060129 (2020).

    Article  Google Scholar 

  12. I. Mohammad, M. Dupuis, P.D. Funkenbusch, and D.H. Kelley, JOM 74, 1908 https://doi.org/10.1007/s11837-022-05254-8 (2022).

    Article  Google Scholar 

  13. A.Yu. Nikolaev, O.B. Pavlenko, A.V. Suzdaltsev, and Yu.P. Zaikov, J. Electrochem. Soc. 167(12), 126511 https://doi.org/10.1149/1945-7111/abb176 (2020).

    Article  Google Scholar 

  14. Zh. Zhao, B. Gao, Y. Feng, Y. Huang, Zh. Wang, Zh. Shi, and X. Hu, JOM 69, 281 https://doi.org/10.1007/s11837-016-1999-6 (2017).

    Article  Google Scholar 

  15. Y. Song, J. Peng, Y. Di, Y. Wang, and N. Feng, JOM 69, 2844 https://doi.org/10.1007/s11837-017-2615-0 (2017).

    Article  Google Scholar 

  16. J. Liu, Sh. Wei, J.J.J. Chen, H. Wijayaratne, Zh. Wang, B. Gao, and M.P. Taylor, JOM 72, 253 https://doi.org/10.1007/s11837-019-03863-4 (2020).

    Article  Google Scholar 

  17. O. Tkacheva, P. Arkhipov, and Yu. Zaykov, Electrochem. Commun. 110, 106624 https://doi.org/10.1016/j.elecom.2019.106624 (2020).

    Article  Google Scholar 

  18. M. Lin, X. Hu, Zh. Shi, B. Gao, J. Yu, and Zh. Wang, JOM 72, 278 https://doi.org/10.1007/s11837-019-03882-1 (2020).

    Article  Google Scholar 

  19. H. Yan, Z. Liu, W.I. Ma, L. Huang, C. Wang, and Y. Liu, JOM 72, 247 https://doi.org/10.1007/s11837-019-03909-7 (2020).

    Article  Google Scholar 

  20. P.S. Pershin, A.V. Suzdaltsev, and Y.P. Zaikov, Russ. Met. (Met.) 2021(2), 213 https://doi.org/10.1134/S0036029521020191 (2021).

    Article  Google Scholar 

  21. A. Yasinskiy, A. Suzdaltsev, S.K. Padamata, P. Polyakov, and Y. Zaikov, Light Met.. https://doi.org/10.1007/978-3-030-36408-3_85 (2020).

    Article  Google Scholar 

  22. B.J. Welch, JOM 51(5), 24–28 https://doi.org/10.1007/s11837-999-0036-4 (1999).

    Article  Google Scholar 

  23. X. Wu. Inert Anodes for Aluminum Electrolysis (Cham, Switzerland) (TMS, Springer Nature Switzerland AG) (2021). https://doi.org/10.1007/978-3-030-28913-3

  24. S.K. Padamata, K. Singh, G.M. Haarberg, and G. Saevarsdottir, J. Electrochem. Soc. 170, 073501 https://doi.org/10.1149/1945-7111/ace332 (2023).

    Article  Google Scholar 

  25. K. Singh, G. Gunnarsson, J.H. Magnusson, G.M. Haarberg, and G. Saevarsdottir, J. Electrochem. Soc. 170, 113507 https://doi.org/10.1149/1945-7111/ad0bae (2023).

    Article  Google Scholar 

  26. E.S. Gorlanov, E.A. Mushihin, S.R. Schneider, and K.V. Kovalskaya, J. Electrochem. Soc. 170, 102501 https://doi.org/10.1149/1945-7111/acfac4 (2023).

    Article  Google Scholar 

  27. J. Yang, W. Tao, L. Chen, J. He, Y. Zhang, J. Yu, and Zh. Wang, JOM 73, 3727 https://doi.org/10.1007/s11837-021-04849-x (2021).

    Article  Google Scholar 

  28. A.V. Suzdaltsev, A.A. Filatov, A.Y. Nikolaev, A.A. Pankratov, N.G. Molchanova, and Y.P. Zaikov, Russ. Met. (Met.) 2018(2), 133 https://doi.org/10.1134/S0036029518020180 (2018).

    Article  Google Scholar 

  29. K. Xie, Zh. Shi, J. Xu, X. Hu, B. Gao, and Zh. Wang, JOM 69, 1963 https://doi.org/10.1007/s11837-017-2478-4 (2017).

    Article  Google Scholar 

  30. S.M. Treceño, A. Allanore, C.M. Bishop, A.T. Marshall, and M.J. Watson, JOM 73, 1899 https://doi.org/10.1007/s11837-021-04681-3 (2021).

    Article  Google Scholar 

  31. A. Mukherjee, M.S. Khan, and R. Kumaresan, J. Electrochem. Soc. 170, 102505 https://doi.org/10.1149/1945-7111/ad02c2 (2023).

    Article  Google Scholar 

  32. Y. Zaikov, V. Batukhtin, N. Shurov, and A. Suzdaltsev, Electrochem. Mater. Technol. 1, 20221007 https://doi.org/10.15826/elmattech.2022.1.007 (2022).

    Article  Google Scholar 

  33. V.K. Mann, A.O. Gusev, and D.A. Simakov. Method of aluminum alloys production, Pat. RU2673597, priority 24.11.2016, published 28.11.2018.

  34. A.V. Rudenko, A.A. Kataev, M.M. Neupokoeva, and O.Y. Tkacheva, Russ. Met. (Met.) 2023(2), 114 https://doi.org/10.1134/S0036029523020180 (2023).

    Article  Google Scholar 

  35. S. Rolseth, H. Gudbrandsen, and J. Thonstad, ECS Trans. 50(11), 251 https://doi.org/10.1149/05011.0251ecst (2012).

    Article  Google Scholar 

  36. V.N. Nekrasov, O.V. Limanovskaya, A.V. Suzdaltsev, A.P. Khramov, and Y.P. Zaikov, Russ. Met. (Metally) 2014(8), 664 https://doi.org/10.1134/S0036029514080084 (2014).

    Article  Google Scholar 

  37. A. Suzdaltsev, and Yu. Zaikov, J. Electrochem. Soc. 170(5), 056506 https://doi.org/10.1149/1945-7111/acd1be (2023).

    Article  Google Scholar 

  38. E.W. Dewing, and E.T. Van der Kouwe, J. Electrochem. Soc. 124, 58 https://doi.org/10.1149/1.2133245 (1977).

    Article  Google Scholar 

  39. E.T. Turkdogan, Physical Chemistry of High Temperature Technology (New York) (Academic) 1st ed. (1980).

  40. A. Suzdaltsev, A. Khramov, V. Kovrov, O. Limanovskaya, V. Nekrasov, and Y. Zaikov, Mat. Sci. Forum 844, 19 https://doi.org/10.4028/www.scientific.net/MSF.844.19 (2016).

    Article  Google Scholar 

  41. S. Livingstone, Rhenium, Rhodium, Palladium, Osmium, Iridium and Platinum (Oxford) (Pergamon, Oxford, 1975).

    Google Scholar 

  42. Y. Wang, J. Peng, and Yu. Di, JOM 70, 1877 https://doi.org/10.1007/s11837-018-2858-4 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Suzdaltsev.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, A.Y., Suzdaltsev, A.V. & Zaikov, Y.P. Anode Process on Gold in KF-AlF3-Al2O3 Melt. JOM (2024). https://doi.org/10.1007/s11837-024-06597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06597-0

Navigation