Skip to main content
Log in

Research on Aluminum Electrolysis from 1970 to 2023: A Bibliometric Analysis

  • Aluminum: Eliminating GHG Emissions
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The purpose of this work is to analyze the development direction and prospects in the field of aluminum electrolysis and to provide reference information for related research and industry personnel. The scientific papers on aluminum electrolysis published in Scopus database from 1970 to 2023 were collected. Bibliometric methods and knowledge mapping visualization software were used to analyze the papers. Both quantitative statistics and qualitative comparative analysis of global scientific papers on aluminum electrolysis were done in terms of annual paper trends, papers by major countries, authors, institutions, journals and research topics, respectively. The results showed that the number of published papers has had an increasing trend in recent years. The top three productive countries are China, Russia and the US, respectively. The top three productive institutions are Northeastern University, Central South University and Norwegian University of Science and Technology, respectively. TMS Light Metals is the publication with the most papers on aluminum electrolysis. The distribution of research results in the field of aluminum electrolysis was analyzed using a visual analysis chart so that scholars can determine the research trends and hot spots in the field of aluminum electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Ashkenazi, Technol. Forecast. Soc. Change 143, 101 https://doi.org/10.1016/j.techfore.2019.03.011 (2019).

    Article  Google Scholar 

  2. A. Kvithyld, D.S. Wong, and E. Herderick, JOM 72, 3321 https://doi.org/10.1007/s11837-020-04354-7 (2020).

    Article  Google Scholar 

  3. D. Brough and H. Jouhara, Int. J. Thermofluids 1, 100007 https://doi.org/10.1016/j.ijft.2019.100007 (2020).

    Article  Google Scholar 

  4. D. Eheliyagoda, J. Li, Y. Geng, and X.L. Zeng, Resour. Policy 76, 102552 https://doi.org/10.1016/j.resourpol.2022.102552 (2022).

    Article  Google Scholar 

  5. Y.B. Zhang, Y.J. Cai, S. Liu, Z.J. Su, and T. Jiang, J. Clean. Prod. 392, 136214 https://doi.org/10.1016/j.jclepro.2023.136214 (2023).

    Article  Google Scholar 

  6. A. Potysz, E.D. Hullebusch, and J. Kierczak, J. Environ. Manage. 219, 138 https://doi.org/10.1016/j.jenvman.2018.04.083 (2018).

    Article  Google Scholar 

  7. L. Dion, J. Mark, L.I. Kiss, S. Poncsak, and C.L. Lagace, J. Clean. Prod. 164, 357 https://doi.org/10.1016/j.jclepro.2017.06.199 (2017).

    Article  Google Scholar 

  8. W.M. Xie, F.P. Zhou, J.Y. Liu, X.L. Bi, Z.J. Huang, Y.H. Li, D.D. Chen, H.Y. Zou, and S.Y. Sun, J. Clean. Prod. 243, 118624 https://doi.org/10.1016/j.jclepro.2019.118624 (2020).

    Article  Google Scholar 

  9. R. Golmohammadzadeh, F. Faraji, B. Jong, C.P. Gonzalo, and P.C. Banerjee, Renew. Sust. Energ. Rev 159, 112202 https://doi.org/10.1016/j.rser.2022.112202 (2022).

    Article  Google Scholar 

  10. H.B. He, Y. Wang, J.J. Long, and Z.H. Chen, Trans. Nonferrous Met. Soc. China 23, 3816 https://doi.org/10.1016/S1003-6326(13)62934-9 (2013).

    Article  Google Scholar 

  11. J.Y. Liu, Z.Y. Li, Y.Q. Tao, D. Zhang, and K.C. Zhou, Trans. Nonferrous Met. Soc. China 21, 566 https://doi.org/10.1016/S1003-6326(11)60752-8 (2011).

    Article  Google Scholar 

  12. B.G. Liu, L. Zhang, K.C. Zhou, Z.Y. Li, and H. Wang, Solid State Sci. 13, 1483 https://doi.org/10.1016/j.solidstatesciences.2011.05.004 (2011).

    Article  Google Scholar 

  13. L. Cassayre, P. Chamelot, L. Arurault, L. Massot, P. Palau, and P. Taxil, Corros. Sci. 49, 3610 https://doi.org/10.1016/j.corsci.2007.03.020 (2007).

    Article  Google Scholar 

  14. D.R. Gunasegaram and D. Molenaar, J. Clean. Prod. 93, 174 https://doi.org/10.1016/j.jclepro.2015.01.065 (2015).

    Article  Google Scholar 

  15. S.X. Huan, Y.W. Wang, J.P. Peng, Y.Z. Di, B. Li, and L.D. Zhang, Miner. Eng. 154, 106386 https://doi.org/10.1016/j.mineng.2020.106386 (2020).

    Article  Google Scholar 

  16. S.P. Li, L.P. Niu, Q. Yue, and T.G. Zhang, Energy 239, 122114 https://doi.org/10.1016/j.energy.2021.122114 (2022).

    Article  Google Scholar 

  17. S.P. Li, T.G. Zhang, L.P. Niu, and Q. Yue, J. Clean. Prod. 290, 125859 https://doi.org/10.1016/j.jclepro.2021.125859 (2021).

    Article  Google Scholar 

  18. Q. Wang, P. Huang, Q.M. Wang, and X.Y. Guo, J. Clean. Prod. 403, 136828 https://doi.org/10.1016/j.jclepro.2023.136828 (2023).

    Article  Google Scholar 

  19. P.K. Muhuri, A.K. Shukla, and A. Abraham, Eng. Appl. Artif. 78, 218 https://doi.org/10.1016/j.engappai.2018.11.007 (2019).

    Article  Google Scholar 

  20. I.A. Lawal, M. Klink, P. Ndungua, and B. Moodleyc, Environ. Res. 175, 34 https://doi.org/10.1016/j.envres.2019.05.005 (2019).

    Article  Google Scholar 

  21. J. Koelmel, M.N.V. Prasad, and K. Pershell, Int. J. Phytoremediation 17, 145 https://doi.org/10.1080/15226514.2013.862207 (2015).

    Article  Google Scholar 

  22. C.Z. Han, R. Wang, N. Xu, X.Y. Wei, Q. Wei, and X. Xu, iLIVER 1, 283 https://doi.org/10.1016/j.iliver.2022.11.006 (2022).

    Article  Google Scholar 

  23. A. Berta, C.M. Angel, G.A.S. Clara, and H. Ruben, Psychiatry Res. 308, 114380 https://doi.org/10.1016/j.psychres.2021.114380 (2022).

    Article  Google Scholar 

  24. H.F. Moed, F.M. Anegon, V.G. Bote, and C.L. Illescas, J. Informetr. 14, 101011 https://doi.org/10.1016/j.joi.2020.101011 (2020).

    Article  Google Scholar 

  25. N.J.V. Eck and L. Waltman, Scientometrics 84, 523 https://doi.org/10.1007/s11192-009-0146-3 (2010).

    Article  Google Scholar 

  26. UN DESA (The United Nations Department of Economic and Social Affairs, The United Nations, 1967), https://www.un.org. Accessed 20 Jan. 2024.

  27. USGS (The United States Geological Survey, The United States Congress, 1879), https://www.usgs.gov. Accessed 20 Jan. 2024.

  28. IAI (Global Primary Aluminum Industry, The International Aluminum Institute, 1972), https://international-aluminium.org. Accessed 20 Jan. 2024.

Download references

Acknowledgements

The authors would like to acknowledge support from the National Natural Science Foundation of China (52341402, 51804070), Fundamental Research Funds for the Central Universities (N2325017) and State Key Laboratory of Advanced Refractories Funds (SKLAR202007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengguo Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lin, J., Liu, C. et al. Research on Aluminum Electrolysis from 1970 to 2023: A Bibliometric Analysis. JOM (2024). https://doi.org/10.1007/s11837-024-06596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06596-1

Navigation