Skip to main content
Log in

The Effect of K and P Doping on the Structure and Electronic Structure of SrFe2As2

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

K- and P-doped SrFe2As2 belong to hole doping and isovalent doping, respectively, and their effects on the band, Fermi surface, and partial density of states of Fe 3d and As 4p orbitals are also significantly different. However, these two types of doping consistently follow the rule that reducing the Fe ions height can quickly suppress antiferromagnetic order. Compared with the As-Fe-As angle, Fe-As bond length, and Fe-Fe distance, the decrease in Fe ions height more directly and quickly suppresses antiferromagnetic order, and the total density of states in the range of – 1.5 eV to ~ 1.5 eV exhibits similar properties in K and P doping in the process of 25% K- and 12.5% P-doped SrFe2As2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and Code Availability

We believe that all datasets underlying the conclusions of the paper should be available to readers. We try to present all the data we can into the manuscript. The minimal dataset to interpret, replicate and build upon the findings reported in the article, supporting the findings of this study, are available from the corresponding author upon reasonable request.

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 https://doi.org/10.1021/ja800073m (2008).

    Article  Google Scholar 

  2. Z.A. Ren, G.C. Che, X.L. Dong, J. Yang, W. Lu, W. Yi, X.L. Shen, Z.C. Li, L.L. Sun, and F. Zhou, EPL (Europhys. Lett.) 83, 17002 https://doi.org/10.1209/0295-5075/83/17002 (2008).

    Article  Google Scholar 

  3. Z.A. Ren, J. Yang, W. Lu, W. Yi, G.C. Che, X.L. Dong, L.L. Sun, and Z.X. Zhao, Mater. Res. Innov. 12, 105 https://doi.org/10.1179/143307508x333686 (2008).

    Article  Google Scholar 

  4. A. Lankau, K. Koepernik, S. Borisenko, V. Zabolotnyy, B. Büchner, J. van den Brink, and H. Eschrig, Phys. Rev. B 82, 184518 https://doi.org/10.1103/PhysRevB.82.184518 (2010).

    Article  Google Scholar 

  5. M.D. Watson, S. Aswartham, L.C. Rhodes, B. Parrett, H. Iwasawa, M. Hoesch, I. Morozov, B. Büchner, and T.K. Kim, Phys. Rev. B 97, 035134 https://doi.org/10.1103/PhysRevB.97.035134 (2018).

    Article  Google Scholar 

  6. M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, and R. Pöttgen, Phys. Rev. B 78, 020503 https://doi.org/10.1103/PhysRevB.78.020503 (2008).

    Article  Google Scholar 

  7. M. Tegel, M. Rotter, V. Weiss, F.M. Schappacher, R. Pöttgen, and D. Johrendt, J. Phys. Condens. Matter 20, 452201 https://doi.org/10.1088/0953-8984/20/45/452201 (2008).

    Article  Google Scholar 

  8. L. Li, J. Wang, J. Cai, Y. Liang, Y. Cui, H. Tao, S. Liu, B. Song, Z. Zhang, and M. He, Solid State Commun. 355, 114931 https://doi.org/10.1016/j.ssc.2022.114931 (2022).

    Article  Google Scholar 

  9. G. Bioletti, G.V.M. Williams, M.A. Susner, T.J. Haugan, D.M. Uhrig, and S.V. Chong, Supercond. Sci. Technol. 32, 064001 https://doi.org/10.1088/1361-6668/ab0b81 (2019).

    Article  Google Scholar 

  10. H. Pfau, C.R. Rotundu, J.C. Palmstrom, S.D. Chen, M. Hashimoto, D. Lu, A.F. Kemper, I.R. Fisher, and Z.X. Shen, Phys. Rev. B 99, 035118 https://doi.org/10.1103/PhysRevB.99.035118 (2019).

    Article  Google Scholar 

  11. S.F. Wu, W.L. Zhang, V.K. Thorsmolle, G.F. Chen, G.T. Tan, P.C. Dai, Y.G. Shi, C.Q. Jin, T. Shibauchi, S. Kasahara, Y. Matsuda, A.S. Sefat, H. Ding, P. Richard, and G. Blumberg, Phys. Rev. Res. 2, 033140 https://doi.org/10.1103/PhysRevResearch.2.033140 (2020).

    Article  Google Scholar 

  12. G.N. Tam, H. Maruyama, J.C. Nino, and G.R. Stewart, Phys. Rev. B 102, 134507 https://doi.org/10.1103/PhysRevB.102.134507 (2020).

    Article  Google Scholar 

  13. M. Merz, L.R. Wang, T. Wolf, P. Nagel, C. Meingast, and S. Schuppler, Phys. Rev. B 104, 184509 https://doi.org/10.1103/PhysRevB.104.184509 (2021).

    Article  Google Scholar 

  14. L. Li, J. Wang, Y. Liang, Y. Cui, H. Tao, S. Liu, B. Song, J. Jian, Z. Zhang, and M. He, J. Mater. Sci. 56, 16533 https://doi.org/10.1007/s10853-021-06342-x (2021).

    Article  Google Scholar 

  15. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 https://doi.org/10.1103/PhysRevLett.101.107006 (2008).

    Article  Google Scholar 

  16. G.F. Chen, Z. Li, G. Li, W.Z. Hu, J. Dong, J. Zhou, X.D. Zhang, P. Zheng, N.L. Wang, and J.L. Luo, Chin. Phys. Lett. 25, 3403 https://doi.org/10.1088/0256-307x/25/9/083 (2008).

    Article  Google Scholar 

  17. T. Kobayashi, S. Miyasaka, S. Tajima, and N. Chikumoto, J. Phys. Soc. Jpn. 83, 104702 https://doi.org/10.7566/jpsj.83.104702 (2014).

    Article  Google Scholar 

  18. J.J. Sanchez, P. Malinowski, J. Mutch, J. Liu, J.W. Kim, P.J. Ryan, and J.H. Chu, Nat. Mater. 20, 1519 https://doi.org/10.1038/s41563-021-01082-4 (2021).

    Article  Google Scholar 

  19. A.F. Kemper, C. Cao, P.J. Hirschfeld, and H.P. Cheng, Phys. Rev. B 80, 104511 https://doi.org/10.1103/PhysRevB.80.104511 (2009).

    Article  Google Scholar 

  20. R.A. Ewings, T.G. Perring, R.I. Bewley, T. Guidi, M.J. Pitcher, D.R. Parker, S.J. Clarke, and A.T. Boothroyd, Phys. Rev. B 78, 220501 https://doi.org/10.1103/PhysRevB.78.220501 (2008).

    Article  Google Scholar 

  21. J. Zhao, W. Ratcliff, J.W. Lynn, G.F. Chen, J.L. Luo, N.L. Wang, J.P. Hu, and P.C. Dai, Phys. Rev. B 78, 140504 https://doi.org/10.1103/PhysRevB.78.140504 (2008).

    Article  Google Scholar 

  22. W.Z. Hu, J. Dong, G. Li, Z. Li, P. Zheng, G.F. Chen, J.L. Luo, and N.L. Wang, Phys. Rev. Lett. 101, 257005 https://doi.org/10.1103/PhysRevLett.101.257005 (2008).

    Article  Google Scholar 

  23. Q. Huang, Y. Qiu, W. Bao, M.A. Green, J.W. Lynn, Y.C. Gasparovic, T. Wu, G. Wu, and X.H. Chen, Phys. Rev. Lett. 101, 257003 https://doi.org/10.1103/PhysRevLett.101.257003 (2008).

    Article  Google Scholar 

  24. P.J. Brown, T. Chatterji, A. Stunault, Y. Su, Y. Xiao, R. Mittal, T. Bruckel, T. Wolf, and P. Adelmann, Phys. Rev. B 82, 024421 https://doi.org/10.1103/PhysRevB.82.024421 (2010).

    Article  Google Scholar 

  25. S.A.J. Kimber, A. Kreyssig, Y.Z. Zhang, H.O. Jeschke, R. Valenti, F. Yokaichiya, E. Colombier, J. Yan, T.C. Hansen, T. Chatterji, R.J. McQueeney, P.C. Canfield, A.I. Goldman, and D.N. Argyriou, Nat. Mater. 8, 471 https://doi.org/10.1038/nmat2443 (2009).

    Article  Google Scholar 

  26. M. Rotter, C. Hieke, and D. Johrendt, Phys. Rev. B 82, 014513 https://doi.org/10.1103/PhysRevB.82.014513 (2010).

    Article  Google Scholar 

  27. U.R. Singh, S.C. White, S. Schmaus, V. Tsurkan, A. Loidl, J. Deisenhofer, and P. Wahl, Sci. Adv. 1, e1500206 https://doi.org/10.1126/sciadv.1500206 (2015).

    Article  Google Scholar 

  28. J.H. Kang, J.W. Kim, P.J. Ryan, L. Xie, L. Guo, C. Sundahl, J. Schad, N. Campbell, Y.G. Collantes, E.E. Hellstrom, M.S. Rzchowski, and C.B. Eom, Proc. Natl. Acad. Sci. U.S.A. 117, 21170 https://doi.org/10.1073/pnas.2001123117 (2020).

    Article  Google Scholar 

  29. L. Li, J. Wang, J. Cai, Y. Liang, Y. Cui, H. Tao, S. Liu, M. He, and B. Song, J. Am. Ceram. Soc. 105, 2258 https://doi.org/10.1111/jace.18183 (2022).

    Article  Google Scholar 

  30. M.J. Han, Q. Yin, W.E. Pickett, and S.Y. Savrasov, Phys. Rev. Lett. 102, 107003 https://doi.org/10.1103/PhysRevLett.102.107003 (2009).

    Article  Google Scholar 

  31. F.J. Ma, Z.Y. Lu, and T. Xiang, Front. Phys. China 5, 150 (2010).

    Article  Google Scholar 

  32. G.R. Stewart, Rev. Mod. Phys. 83, 1589 https://doi.org/10.1103/RevModPhys.83.1589 (2011).

    Article  Google Scholar 

  33. D. Kasinathan, M. Schmitt, K. Koepernik, A. Ormeci, K. Meier, U. Schwarz, M. Hanfland, C. Geibel, Y. Grin, A. Leithe-Jasper, and H. Rosner, Phys. Rev. B 84, 054509 https://doi.org/10.1103/PhysRevB.84.054509 (2011).

    Article  Google Scholar 

  34. H. Ghosh and S. Sen, J. Alloys Compd. 677, 245 https://doi.org/10.1016/j.jallcom.2016.03.257 (2016).

    Article  Google Scholar 

  35. T.L. Mai and V.H. Tran, Comput. Mater. Sci. 156, 206 https://doi.org/10.1016/j.commatsci.2018.09.052 (2019).

    Article  Google Scholar 

  36. M. Aghajani, H. Hadipour, and M. Akhavan, Comput. Mater. Sci. 160, 233 https://doi.org/10.1016/j.commatsci.2019.01.021 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by Hebei Province Higher Education Science and Technology Research Project under Grant No. ZC2023016, Campus Scientific Research Project of Tangshan Normal University under Grant No. 2023B22.

Author information

Authors and Affiliations

Authors

Contributions

We declare that all the co-authors have contributed to this paper, or provided help for this study, so that this paper can be completed smoothly. Now simply list their contributions: Li Li: Conceptualization, Methodology, Software , Writing- Original draft preparation. Zhihua Zhang: Supervision, Writing- Reviewing and Editing. Ming He: Software Validation. Long Lin: Supervision. Hualong Tao: Validation. Yan Cui: Validation. Weifang Wang: Software Validation. Qinghui Liu: Software Validation. Liyu Chen: Supervision. Hongli Wang: Validation. Dongfang Jia: Validation, Visualization.

Corresponding authors

Correspondence to Li Li or Zhihua Zhang.

Ethics declarations

Conflict of interest

We declare that we have no conflicts of interest or competing interests including all relationships or interests of the manuscript’s authors that could potentially influence or bias the submitted work.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, Z., He, M. et al. The Effect of K and P Doping on the Structure and Electronic Structure of SrFe2As2. JOM (2024). https://doi.org/10.1007/s11837-024-06591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06591-6

Navigation