Skip to main content
Log in

Shape Anisotropy and Magnetic Texture Determination in Anisotropic and Isotropic Alnico Magnets

  • New Insights into Processing and Manufacturing of Magnetic Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hysteresis curves of commercial Alnico 5 and Alnico 2 magnets were evaluated with the anisotropic Stoner-Wohlfarth model. Alnico 2 is an isotropic magnet, whereas Alnico 5 is an anisotropic magnet. These magnets have five main alloying elements: Al, Fe, Ni, Co and Cu. The described method allows a direct estimate of the shape anisotropy in any commercial Alnico magnet, avoiding laborious production of single crystals. Besides, the magnetic anisotropy of any sample with fiber texture can be determined. Parameters related to magnetic shape anisotropy can be directly extracted from the hysteresis of either isotropic or anisotropic Alnico magnets. A shape anisotropy of 1.4 kOe was estimated for the isotropic Alnico 2. The shape anisotropy of the anisotropic Alnico 5 was estimated at 2.2 kOe. The magnetic texture of the Alnico 5 sample can be well described by a Gaussian distribution and remanence to saturation ratio, Mr/Ms, of 0.931. A spring effect is observed in the hysteresis of the Alnico 2 and Alnico 5 magnets, confirming that the ferromagnetic phase is single domain size and that the mechanism of reversal is coherent rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Takeuchi, and Y. Iwama, Trans. Jpn. Inst. Met. 17, 489 (1976).

    Article  Google Scholar 

  2. V. Sergeyev, and T. Bulygina, IEEE Trans. Magn. 6, 194 (1970).

    Article  Google Scholar 

  3. E. Steinort, E.R. Cronk, S.J. Garvin, and H. Tiderman, J. Appl. Phys. 33, 1310 (1962).

    Article  Google Scholar 

  4. R. C. O´Handley, Modern Magnetic Materials: Principles and Applications. (Wiley-Interscience, New York, 1999), p. 482.

  5. Y. Iwama, and M. Takeuchi, Trans. Jpn. Inst. Met. 15, 371 (1974).

    Article  Google Scholar 

  6. S.A. Romero, D. Rodrigues Jr., T. Germano, R. Cohen, J.A. Castro, and M.F. de Campos, Appl. Nanosci. 13, 6353 (2023).

    Article  Google Scholar 

  7. A.M. Gabay, W.F. Li, and G.C. Hadjipanayis, J. Magn. Magn. Mat. 323, 2470 (2011).

    Article  Google Scholar 

  8. S. Luo, M. Yang, Z. Xu, T. Zhaod, S. Ur Rehman, X. Yu, S. Zhong, H. Wang, C. Jin, Q. Ma, and B. Yang, J. Alloys Compd. 942, 168999 (2023).

    Article  Google Scholar 

  9. S.J. Lillywhite, A.J. Williams, B.E. Davies, and I.R. Harris, J. Microsc. 205, 270 (2002).

    Article  MathSciNet  Google Scholar 

  10. S.A. Romero, C.G. Hauegen, F.J.G. Landgraf, and M.F. de Campos, Mater. Sci. Forum 869, 608 (2016).

    Article  Google Scholar 

  11. E.A. Nesbitt, and H.J. Williams, J. Appl. Phys. 26, 1217 (1955).

    Article  Google Scholar 

  12. R.D. Heidenreich, and E.A. Nesbitt, J. Appl. Phys. 23, 352 (1952).

    Article  Google Scholar 

  13. E.A. Nesbitt, and R.D. Heidenreich, J. Appl. Phys. 23, 366 (1952).

    Article  Google Scholar 

  14. T.O. Paine, L.I. Mendelsohn, and F.E. Luborsky, Phys. Rev. 100, 1055 (1955).

    Article  Google Scholar 

  15. F.E. Luborsky, E.F. Fullam, and D.S. Hallgren, J. Appl. Phys. 29, 989 (1958).

    Article  Google Scholar 

  16. F.E. Luborsky, L.I. Mendelsohn, and T.O. Paine, J. Appl. Phys. 28, 344 (1957).

    Article  Google Scholar 

  17. E.P. Wohlfarth, Adv. Phys. 8, 87 (1959).

    Article  Google Scholar 

  18. E.C. Stoner, Rep. Prog. Phys. 13, 83 (1950).

    Article  Google Scholar 

  19. M.J. Kramer, R.W. Mccallum, I.A. Anderson, and S. Constantinides, JOM 64, 752 (2012).

    Article  Google Scholar 

  20. J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, and D. Sellmyer, Acta Mater. 158, 118 (2018).

    Article  Google Scholar 

  21. J. Cui, J. Ormerod, D. Parker, R. Ott, A. Palasyuk, S. Mccall, M.P. Paranthaman, M.S. Kesler, M.A. Mcguire, I.C. Nlebedim, C. Pan, and T. Lograsso, JOM 74, 1279 (2022).

    Article  Google Scholar 

  22. Q. Xing, M.K. Miller, L. Zhou, H.M. Dillon, R.W. McCallum, I.E. Anderson, S. Constantinides, and M.J. Kramer, IEEE Trans. Magn. 49, 3314 (2013).

    Article  Google Scholar 

  23. A.G. Kassen, E.M.H. White, W. Tang, L. Hu, A. Palasyuk, L. Zhou, and I.E. Anderson, JOM 69, 1706 (2017).

    Article  Google Scholar 

  24. L. Zhou, W. Guo, J.D. Poplawsky, L. Ke, W. Tang, I.E. Anderson, and M.J. Kramer, Acta Mater. 153, 15 (2018).

    Article  Google Scholar 

  25. P.F. Rottmann, A.T. Polonsky, T. Francis, M.G. Emigh, M. Krispin, G. Rieger, M.P. Echlin, C.G. Levi, and T.M. Pollock, Mater. Today 49, 23 (2021).

    Article  Google Scholar 

  26. H. Zijlstra, IEEE Trans. Magn. 14, 661 (1978).

    Article  Google Scholar 

  27. R.K. Tenzer, and K.J. Kronenberg, J. Appl. Phys. 29, 302 (1958).

    Article  Google Scholar 

  28. F.E. Luborsky, J. Appl. Phys. 34, 1706 (1963).

    Article  Google Scholar 

  29. L.I. Mendelsohn, F.E. Luborsky, and T.O. Paine, J. Appl. Phys. 26, 1274 (1955).

    Article  Google Scholar 

  30. F.E. Luborsky, J. Appl. Phys. 32, S171 (1961).

    Article  Google Scholar 

  31. F.E. Luborsky, J. Appl. Phys. 37, 1091 (1966).

    Article  Google Scholar 

  32. R.B. Falk, J. Appl. Phys. 37, 1108 (1966).

    Article  Google Scholar 

  33. B.D. Cullity, and C.D. Graham Jr., Introduction to Magnetic Materials, 2nd edn. (Wiley- IEEE Press, Piscataway, NJ, 2009).

    Google Scholar 

  34. K. Hoselitz, and M. McCaig, Proc. Phys. Soc. B 64, 549 (1951).

    Article  Google Scholar 

  35. Y. Iwama, M. Takeuchi, and M. Iwata, Journal de Physique Colloques 32, C1-556 (1971).

    Google Scholar 

  36. M.F. de Campos, F.A.S. da Silva, E.A. Perigo, and J.A. de Castro, J. Magn. Magn. Mater. 345, 147 (2013).

    Article  Google Scholar 

  37. M.F. de Campos, S.A. Romero, and J.A. de Castro, J. Magn. Magn. Mater. 564, 170119 (2022).

    Article  Google Scholar 

  38. M.F. de Campos, and J.A. de Castro, IEEE Trans. Magn. 56, 7512304 (2020).

    Article  Google Scholar 

  39. M.F. de Campos, and J.A. de Castro, Acta Phys. Pol. A 136, 737 (2019).

    Article  Google Scholar 

  40. S.A. Romero, A.J. Moreira, F.F.G. Landgraf, and M.F. de Campos, J. Magn. Magn. Mater. 514, 167147 (2020).

    Article  Google Scholar 

  41. H. R. Kirchmayr, Supermagnets, Hard Magnetic Materials. NATO ASI Series, vol 331 ed. G.J. Long, F. Grandjean (Springer, Dordrecht, 1991) pp. 449–460.

  42. E.A. Périgo, I. Titov, R. Weber, D. Honecker, E.P. Gilbert, M.F. de Campos, and A. Michels, J. Alloys Compd. 677, 139 (2016).

    Article  Google Scholar 

  43. M.F. de Campos, F.J.G. Landgraf, N.H. Saito, S.A. Romero, A.C. Neiva, F.P. Missell, E. de Morais, S. Gama, E.V. Obrucheva, and B.V. Jalnin, J. Appl. Phys. 84, 368 (1998).

    Article  Google Scholar 

  44. C.R.H. Bahl, AIP Adv. 11, 075028 (2021).

    Article  Google Scholar 

  45. D.-X. Chen, E. Pardo, and A. Sanchez, IEEE Trans. Magn. 41, 2077 (2005).

    Article  Google Scholar 

  46. M.R. Zaghloul, A.N. Ali, and A.C.M. Trans, Math. Softw. 38, 1 (2011).

    Article  Google Scholar 

  47. M.R. Zaghloul, and A.C.M. Trans, Math. Softw. 42, 1 (2016).

    Article  Google Scholar 

  48. T.M.L. Alves, C.G. Bezerra, A.D.C. Viegas, S. Nicolodi, M.A. Corrêa, and F. Bohn, J. Appl. Phys. 117, 083901 (2015).

    Article  Google Scholar 

  49. C.W. Searle, V. Davis, and R.D. Hutchens, J. Appl. Phys. 53, 2395 (1982).

    Article  Google Scholar 

  50. M.F. de Campos, F.A.S. da Silva, and J.A. de Castro, Mater. Sci. Forum 775–776, 431 (2014).

    Article  Google Scholar 

  51. S.R. Trout, and C.D. Graham Jr., IEEE Trans. Magn. 12, 1015 (1976).

    Article  Google Scholar 

  52. Y.B. Kim, and J. Han-min, J. Magn. Magn. Mater. 169, 114 (1997).

    Article  Google Scholar 

  53. R.C. Hall, Trans. TMS-AIME 218, 268 (1960).

    Google Scholar 

  54. R.S. Sundar, and S.C. Deevi, Int. Mat. Rev. 50, 157 (2005).

    Article  Google Scholar 

  55. T. Hasegawa, S. Kanatani, M. Kazaana, K. Takahashi, K. Kumagai, M. Hirao, and S. Ishio, Sci. Rep. 7, 13215 (2017).

    Article  Google Scholar 

  56. H. Nishio, H. Taguchi, S. Hashimoto, K. Yajima, A. Fukuno, and H. Yamamoto, J. Phys. D 29, 2240 (1996).

    Article  Google Scholar 

  57. M.F. de Campos, Mater. Sci. Forum 869, 591 (2016).

    Article  Google Scholar 

  58. M.F. de Campos, and J.A. de Castro, J. Rare Earths 37, 1015 (2019).

    Article  Google Scholar 

  59. S.A. Romero, M.F. de Campos, J.A. de Castro, A.J. Moreira, and F.J.G. Landgraf, J. Alloys Compd. 551, 312 (2013).

    Article  Google Scholar 

  60. A.M. Gabay, W. Tang, Y. Zhang, and G.C. Hadjipanayis, Appl. Phys. Lett. 78, 1595–1597 (2001).

    Article  Google Scholar 

Download references

Acknowledgments

FAPERJ- Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro— FAPERJ. CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico. K S T de Souza—Metallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

M F de Campos—Writing, theory, conceptualization, S A Romero—Experimental measurements, L M da Silva—Experimental measurements, J A de Castro—Theory, numerical methods, programming.

Corresponding author

Correspondence to Marcos Flavio de Campos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Campos, M.F., Romero, S.A., da Silva, L.M. et al. Shape Anisotropy and Magnetic Texture Determination in Anisotropic and Isotropic Alnico Magnets. JOM (2024). https://doi.org/10.1007/s11837-024-06586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06586-3

Navigation