Skip to main content
Log in

A Superior Technology for Removing Fluorine from Spent Cathode Carbon: Optimization of the Process by Response Surface Methodology

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Spent cathode carbon is a type of waste generated during the maintenance or replacement of aluminum reduction cells, which contains some toxic fluorides and cyanides. If not treated, and through wanton accumulation, these toxic substances will gradually enter the soil and groundwater, causing water pollution, endangering human health, and compromising ecological environment safety. Therefore, this study used spent cathode carbon produced during aluminum electrolysis as raw material. In a steam atmosphere, the removal of fluorine was achieved through high-temperature calcination in a muffle furnace. The effects of several main factors (such as calcination temperature, holding time, particle size, and water vapor flow) on the defluorination rate were studied using the single-factor method and response surface method (RSM). The results showed that the optimum process values were as follows: the calcination temperature was 1100°C, the holding time was 3 h, the particle size was 150–200 mesh, and the water vapor flow was 3 mL min−1. The defluorination rate obtained from the experiment was 96.2%, which was similar to the rate predicted by the response surface model. The entire process is simple, low-cost, and environmentally friendly. Overall, this study provides a new strategy for treating toxic spent cathode carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Tschöpe, C. Schøning, and J.R. Grande, Metall. Mater. Trans. B 43, 290 (2012).

    Article  Google Scholar 

  2. M. Soerlie, Aluminium 86, 102 (2010).

    Google Scholar 

  3. D.F. Lisbona, C. Somerfield, and K.M. Steel, Ind. Eng. Chem. Res. 51, 12712 (2012).

    Article  Google Scholar 

  4. V. Mambakkam, R. Alicandri, and K. Chattopadhyay, SPL as a Carbon Injection Source in an EAF: A Process Study, 2019.

  5. D.F. Lisbona and K.M. Steel, Sep. Purif. Technol. 61, 182 (2008).

    Article  Google Scholar 

  6. A. Agrawal, K. Sahu, and B. Pandey, Resour. Conserv. Recycl. 42, 99 (2004).

    Article  Google Scholar 

  7. S. Emami, H. Aghajani, and A.T. Tabrizi, J. Sustain. Metall. 9, 1803 (2023).

    Article  Google Scholar 

  8. B. Mazumder and S.R. Devi, J. Environ. Sci. Eng. 50, 203 (2008).

    Google Scholar 

  9. M.J. Palmieri, L.F. Andrade-Vieira, M.V.C. Trento, M.W. de Faria Eleutério, J. Luber, L.C. Davide, and S. Marcussi, Water Air Soil Pollut. 227, 1 (2016).

    Article  Google Scholar 

  10. T. Maffei, R. Khatami, S. Pierucci, T. Faravelli, E. Ranzi, and Y.A. Levendis, Combust. Flame 160, 2559 (2013).

    Article  Google Scholar 

  11. R. Hurt, J.-K. Sun, and M. Lunden, Combust. Flame 113, 181 (1998).

    Article  Google Scholar 

  12. S. Bhatia and D. Perlmutter, AIChE J. 27, 247 (1981).

    Article  Google Scholar 

  13. I. Smith, Combust. Flame 17, 303 (1971).

    Article  Google Scholar 

  14. T. Pong, R. Adrien, J. Besida, T. O’donnell, and D. Wood, Process Saf. Environ. Protect. 78, 204 (2000).

    Article  Google Scholar 

  15. W. Yaowu, P. Jianping, and D. Yuezhong, JOM 70, 1877 (2018).

    Article  Google Scholar 

  16. M. Xie, R. Li, H. Zhao, W. Liu, T. Lu, and F. Liu, J. Clean. Prod. 249, 119370 (2020).

    Article  Google Scholar 

  17. M.-Z. Xie, H.-L. Zhao, Z.-G. Wu, W. Liu, R.-B. Li, and F.-Q. Liu, J. Sustain. Metall. 6, 715 (2020).

    Article  Google Scholar 

  18. B. Mazumder and S.R. Devi, IOSR J. Appl. Chem. 3, 24 (2013).

    Article  Google Scholar 

  19. D. Yu and K. Chattopadhyay, Can. Metall. Q. 55, 251 (2016).

    Article  Google Scholar 

  20. W.S. Rickman and J. Young, Light Metals 1987, 659 (1987).

    Google Scholar 

  21. R.P. Pawlek, Spent Potlining: An Update (Springer, 2012).

    Google Scholar 

  22. Z. Chen, B. Niu, L. Zhang, and Z. Xu, J. Hazard. Mater. 342, 192 (2018).

    Article  Google Scholar 

  23. L. Nan, L. Rongxing, X. Gang, H. Yanqing, Y. Xiaohua, C. Lin, and W. Zuxu, Light Metals (2013).

  24. L. Andrade-Vieira, L. Davide, L. Gedraite, J. Campos, and H. Azevedo, Ecotoxicol. Environ. Saf. 74, 2065 (2011).

    Article  Google Scholar 

  25. Z. Zhu, L. Xu, Z. Han, J. Liu, L. Zhang, C. Yang, Z. Xu, and P. Liu, J. Environ. Manag. 302, 114028 (2022).

    Article  Google Scholar 

  26. Z.D. Liu, X.H. Yu, and G. Xie, Light Metals, 03, 30–33, 59 (2012).

  27. N. Li, G. Xie, Z.X. Wang, Y.Q. Hou, and R.X. Li, Adv. Mater. Res. 881–883, 1660 (2014).

    Article  Google Scholar 

  28. Y. Courbariaux, J. Chaouki, and C. Guy, Ind. Eng. Chem. Res. 43, 5828 (2004).

    Article  Google Scholar 

  29. S.J.S. Chelladurai, K. Murugan, A.P. Ray, M. Upadhyaya, V. Narasimharaj, and S. Gnanasekaran, Mater. Today Proc. 37, 1301 (2021).

    Article  Google Scholar 

  30. S.J.S. Chelladurai, R. Arthanari, R. Selvarajan, R. Kanagaraj, and P. Angappan, Trans. Indian Inst. Met. 71, 2221 (2018).

    Article  Google Scholar 

  31. Y. Xu, H. Xia, Q. Zhang, W. Cai, G. Jiang, and L. Zhang, ChemistrySelect 7, e202203433 (2022).

    Article  Google Scholar 

  32. S. Oza, N. Prajapati, P. Kodgire, and S.S. Kachhwaha, Water-Energy Nexus 4, 187 (2021).

    Article  Google Scholar 

  33. A. Raheem, L. Ding, Q. He, F.H. Mangi, Z.H. Khand, M. Sajid, A. Ryzhkov, and G. Yu, Fuel 324, 124544 (2022).

    Article  Google Scholar 

  34. E. Kweinor Tetteh, E. Obotey Ezugbe, D. Asante-Sackey, E.K. Armah, and S. Rathilal, Molecules 26, 1068 (2021).

    Article  Google Scholar 

  35. Y. Xu, H. Xia, Q. Zhang, G. Jiang, L. Zhang, C. Xin, and W. Cai, Appl. Energy 332, 120485 (2023).

    Article  Google Scholar 

  36. M.D. Turan, H. Arslanoğlu, and H.S. Altundoğan, J. Taiwan Inst. Chem. Eng. 50, 49 (2015).

    Article  Google Scholar 

  37. J. Qu, X. Meng, H. You, X. Ye, and Z. Du, Biores. Technol. 241, 1036 (2017).

    Article  Google Scholar 

  38. S. Saha, B.-H. Jeon, M.B. Kurade, S.B. Jadhav, P.K. Chatterjee, S.W. Chang, S.P. Govindwar, and S.J. Kim, J. Clean. Prod. 190, 411 (2018).

    Article  Google Scholar 

  39. A. Reghioua, D. Barkat, A.H. Jawad, A.S. Abdulhameed, A.A. Al-Kahtani, and Z.A. Alothman, J. Environ. Chem. Eng. 9, 105166 (2021).

    Article  Google Scholar 

  40. C. Zhu, S. Zhou, Y. Wei, B. Li, and H. Wang, J. Clean. Prod. 408, 137229 (2023).

    Article  Google Scholar 

  41. Y. Liu, J. Liu, and X. Jiang, Trans. Inst. Min. Metall. 125, 211 (2016).

    Google Scholar 

  42. K. Yang, P. Gong, Z. Tian, Y. Lai, and J. Li, J. Clean. Prod. 261, 121090 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The research is funded by Yunnan Xingdian Talent Support Project- Industrial innovation talents (2019-1096), Yunnan Xingdian Talent Support Project-Young talents (2018-73).

Author information

Authors and Affiliations

Authors

Contributions

WY: Data curation, Formal Analysis, Investigation, Methodology, Writing—original draft. WC: Data curation, Methodology, Writing—original draft. YX: Data curation, Methodology, Writing—original draft. HX: Conceptualization, Funding acquisition, Resources, Software, Supervision, Validation. JT: Data curation, Methodology. LZ: Conceptualization, Funding acquisition, Resources, Software, Supervision, Validation.

Corresponding authors

Correspondence to Hongying Xia or Libo Zhang.

Ethics declarations

Conflict of interest

Each contributing author has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Cai, W., Xu, Y. et al. A Superior Technology for Removing Fluorine from Spent Cathode Carbon: Optimization of the Process by Response Surface Methodology. JOM (2024). https://doi.org/10.1007/s11837-024-06572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06572-9

Navigation