Skip to main content
Log in

Development of Novel Cube-Embedded MnO2/ZnO Nanocomposite for OER Activity and Supercapacitor Performance Evaluation

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The development of an inexpensive, efficient, and sustainable material suitable for energy storage applications is the need of modern era. Due to their affordability, eco-friendliness, high efficiency, and unique electronic structure metal oxides are the favorable candidate for this purpose. Here, the most desirable MnO2/ZnO nanocomposites were fabricated via hydrothermal route. The successful fabrication of synthetic material was confirmed via X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscope, Raman spectroscopy, and X-ray photoelectron spectroscopy by analyzing the crystal structure, functionality, morphology, chemical property, and electronic properties. The electrochemical study was carried out in 1.0 M KOH (alkaline media) to assess the electrochemical performance of the fabricated composite materials for oxygen evolution reaction (OER) and supercapacitors. For this purpose, several various tests, like cyclic voltammetry, linear sweep voltammetry, galvanostatic charge discharge, and electrochemical impedance spectroscopy were performed. The electrochemical results revealed that the fabricated MnO2/ZnO nanocomposite has a Tafel slope and overpotential of 33.7 mV dec−1 and 274 mV, respectively. The small values of the Tafel slope and overpotential confirmed that our fabricated MnO2/ZnO nanocomposite is a potential candidate for OER. Moreover, the resultant MnO2/ZnO nanocomposite has a specific capacitance of 1038.3 F g−1 and a power density of 396.3 Wh kg−1. All these results confirmed that the fabricated MnO2/ZnO nanocomposite is a potential candidate for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Q. Li, et al., Adv. Funct. Mater. 33(40), 2303466 (2023).

    Article  Google Scholar 

  2. W. Kuang, et al., Acta Mater. 159, 16 (2018).

    Article  Google Scholar 

  3. L. Sha, et al., Chem. Eng. J. 481, 148393 (2024).

    Article  Google Scholar 

  4. J. Wang, et al., Sens. Actuators B Chem. 380, 133350 (2023).

    Article  Google Scholar 

  5. Z. Huang, et al., J. Phys. Chem. Solids 167, 110746 (2022).

    Article  Google Scholar 

  6. Z. Huang, et al., J. Phys. Chem. Solids 161, 110479 (2022).

    Article  Google Scholar 

  7. G. Zhang, et al., ACS Appl. Electron. Mater. 6(2), 1339 (2024).

    Article  Google Scholar 

  8. X. Zhao, et al., Appl. Surf. Sci. 642, 158639 (2024).

    Article  Google Scholar 

  9. D. Chen and T. Savidge, Science 349(6251), 936 (2015).

    Article  Google Scholar 

  10. S. Cherevko, et al., ChemCatChem 6(8), 2219 (2014).

    Article  Google Scholar 

  11. X. Xie, et al., Adv. Funct. Mater. 32(21), 2110036 (2022).

    Article  Google Scholar 

  12. J.K. Dombrovskis and A.E. Palmqvist, Fuel Cells 16(1), 4 (2016).

    Article  Google Scholar 

  13. J.K. Nørskov, et al., J. Phys. Chem. B 108(46), 17886 (2004).

    Article  Google Scholar 

  14. Z. Saleem, et al., Catalysts 10(4), 464 (2020).

    Article  Google Scholar 

  15. C.-H. Li, et al., ACS Appl. Mater. Interfaces 15(29), 35459 (2023).

    Article  Google Scholar 

  16. S. Yin, et al., Chem. Eng. J. 464, 142683 (2023).

    Article  Google Scholar 

  17. Y. Yan, et al., J. Mater. Chem. A 4(45), 17587 (2016).

    Article  Google Scholar 

  18. X. Li, et al., J. Mater. Chem. A 4(31), 11973 (2016).

    Article  Google Scholar 

  19. L. Zhuang, et al., Angew. Chem. Int. Ed. 59(34), 14664 (2020).

    Article  Google Scholar 

  20. S. Cherevko, et al., Catal. Today 262, 170 (2016).

    Article  Google Scholar 

  21. Y. Du, et al., Chem. Eng. J. 476, 146605 (2023).

    Article  Google Scholar 

  22. H. He, et al., Org. Lett. 25(38), 7014 (2023).

    Article  Google Scholar 

  23. X. Zhang, et al., Adv. Energy Mater. 6(11), 1502588 (2016).

    Article  Google Scholar 

  24. M. Wang, et al., Nat. Chem. 10(6), 667 (2018).

    Article  Google Scholar 

  25. K. Zhang and R. Zou, Small 17(37), 2100129 (2021).

    Article  Google Scholar 

  26. R. Siavash Moakhar, et al., Adv. Mater. 33(33), 2007285 (2021).

    Article  Google Scholar 

  27. M. Parveen, et al., Appl. Nanosci. 12(5), 1643 (2022).

    Article  Google Scholar 

  28. S. Xiong, et al., Electrochim. Acta 222, 999 (2016).

    Article  Google Scholar 

  29. C. Liu, et al., Appl. Surf. Sci. 469, 276 (2019).

    Article  Google Scholar 

  30. Y.-K. Hsu, Y.-C. Chen, and Y.-G. Lin, ACS Appl. Mater. Interfaces 7(25), 14157 (2015).

    Article  Google Scholar 

  31. T. Zahra, et al., Int. J. Hydrogen Energy 46(37), 19347 (2021).

    Article  Google Scholar 

  32. A. Tahir, et al., ACS Appl. Nano Mater. 6(3), 1631 (2023).

    Article  Google Scholar 

  33. S. Mu, et al., Natl. Sci. Rev. 8(7), 178 (2021).

    Google Scholar 

  34. Q.-P. Ding, et al., J. Phys. Chem. C 112(48), 18846 (2008).

    Article  Google Scholar 

  35. J. Jitputti, et al., J. Solid State Chem. 180(5), 1743 (2007).

    Article  Google Scholar 

  36. M.Y. Rafiq, et al., J. Alloys Compd. 729, 1072 (2017).

    Article  Google Scholar 

  37. E. Samuel, et al., ACS Sustain. Chem. Eng. 8(9), 3697 (2020).

    Article  Google Scholar 

  38. Z. Liang, et al., Chin. J. Struct. Chem. 42(11), 100108 (2023).

    Article  Google Scholar 

  39. M.A. Dar, et al., Mater. Today Proc. 66, 1689 (2022).

    Article  Google Scholar 

  40. A.L. Tomas-Garcia, et al., Int. J. Electrochem. Sci. 9(2), 1016 (2014).

    Article  Google Scholar 

  41. V.V. Kutwade, et al., J. Mater. Sci. Mater. Electron. 34(14), 1 (2023).

    Article  Google Scholar 

  42. J. Huang, et al., J. Mater. Chem. A 8(48), 25465 (2020).

    Article  Google Scholar 

  43. S. Zhang, et al., Catal. Commun. 113, 19 (2018).

    Article  Google Scholar 

  44. X. Ye, et al., Nanoscale 13(35), 14854 (2021).

    Article  Google Scholar 

  45. Y. Zhang, et al., Appl. Catal. B 257, 117899 (2019).

    Article  Google Scholar 

  46. J. Sun, et al., Angew. Chem. Int. Ed. 60(35), 19435 (2021).

    Article  Google Scholar 

  47. M.U. Nisa, et al., Fuel 321, 124086 (2022).

    Article  Google Scholar 

  48. M. Tariq, et al., Int. J. Hydrogen Energy 45(35), 17287 (2020).

    Article  Google Scholar 

  49. N.A. Khan, et al., Int. J. Hydrogen Energy 48(80), 31142 (2023).

    Article  Google Scholar 

  50. B. Shabbir, et al., Fuel 341, 127638 (2023).

    Article  Google Scholar 

  51. Y. Gao, et al., ACS Appl. Energy Mater. 3(1), 666 (2019).

    Article  Google Scholar 

  52. K. Bera, et al., Inorg. Chem. 60(24), 19429 (2021).

    Article  Google Scholar 

  53. C. Wang, et al., Int. J. Hydrogen Energy 46(17), 10356 (2021).

    Article  Google Scholar 

  54. M. Boudart, Chem. Rev. 95(3), 661 (1995).

    Article  Google Scholar 

  55. J. Ge, et al., Small 16(34), 2001856 (2020).

    Article  Google Scholar 

  56. P. Anandhi, V.J. Senthil Kumar, and S. Harikrishnan, Funct. Mater. Lett. 12(05), 1950064 (2019).

    Article  Google Scholar 

  57. M. Diantoro, et al., Int. J. Appl. Ceram. Technol. 20(4), 2077 (2023).

    Article  Google Scholar 

  58. I. Hussain, et al., J. Mater. Chem. A 10(9), 4475 (2022).

    Article  Google Scholar 

  59. S. Guan, et al., Adv. Funct. Mater. https://doi.org/10.1002/adfm.202314890 (2024).

    Article  Google Scholar 

  60. M.S. Waheed, et al., Ceram. Int. 49(9), 13298 (2023).

    Article  Google Scholar 

  61. R. Yang, et al., Adv. Mater. https://doi.org/10.1002/adma.202314247 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

The Deanship of Scientific Research at King Khalid University is greatly appreciated for funding (R.G.P-1/356/44). The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R453), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. A.M.A. Henaish thanks to Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have done equal work.

Corresponding author

Correspondence to Salma Aman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waheed, M.S., Alsalhi, S.A., Abdelmohsen, S.A.M. et al. Development of Novel Cube-Embedded MnO2/ZnO Nanocomposite for OER Activity and Supercapacitor Performance Evaluation. JOM (2024). https://doi.org/10.1007/s11837-024-06559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06559-6

Navigation