Skip to main content
Log in

Enhancement in the Wear Resistance of Ti-Al-Si Coatings Fabricated by Hot Dipping

  • Phase Transformation and Microstructure Evolution during Thermomechanical Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ti-Al-Si coatings with excellent wear resistance were prepared on the surface of Ti plates by using a combination of hot-dip and thermal diffusion processes. The microstructure, growth kinetics and wear resistance mechanism of the coatings were investigated. The results show the coatings by hot dipping achieved good metallurgical bonding as well as presenting a multilayer phase structure, which was roughly divided into a diffusion layer containing Ti(Al, Si)3, a hybrid layer consisting of ι2-Ti3AlSi5 phase + Al, and the outermost Al-Si alloy layer. After thermal diffusion, the growth kinetics of the diffusion layer (Ti(Al, Si)3 phase) conformed to the Arrhenius relationship, and the fitted equation for the thickness of the reactive layer versus the diffusion parameter was: y = 2.7 × 10−3 exp(− 65,300/RT)t1/2. In addition, the hardness of the coating immersed for 15 min reached 740 HV, which was about 2.9 times that of the substrate, and the wear rate was only 50% of that of the substrate. The excellent wear resistance was attributed to the hard Ti(Al, Si)3 phase as well as the integrity of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Wang, X. Ye, and Y. Li, Mater. Sci. Eng. A 869, 144788 (2023).

    Article  Google Scholar 

  2. Y. Wang, S. Xiu, and S. Zhang, Surf. Coat. Technol. 417, 127211 (2021).

    Article  Google Scholar 

  3. D. Li, Q. Le, X. Zhou, X. Li, C. Hu, R. Guo, T. Wang, P. Wang, and W. Hu, J. Magnes. Alloys 12, 1054 (2024).

    Article  Google Scholar 

  4. S. Zhao, F. Meng, and B. Fan, Wear 512–513, 204532 (2023).

    Article  Google Scholar 

  5. Y. Zhao, Z. Fan, and Q. Tan, Tribol. Int. 155, 106758 (2021).

    Article  Google Scholar 

  6. M. Roostaei, A. Taghizadeh Tabrizi, and H. Aghajani, Tribol. Int. 191, 109129 (2024).

    Article  Google Scholar 

  7. H. Wu, Y. Wu, and M. Yan, Opt. Laser Technol. 164, 109498 (2023).

    Article  Google Scholar 

  8. C. Lin, X. Peng, and Y. Shi, J. Market. Res. 24, 1264 (2023).

    Google Scholar 

  9. D. Nolan, S.W. Huang, V. Leskovsek, and S. Braun, Surf. Coat. Technol. 200, 5698 (2006).

    Article  Google Scholar 

  10. A. Taghizadeh Tabrizi, H. Aghajani, and F. Farhang Laleh, Surface Coat. Technol. 419, 127317 (2021).

    Article  Google Scholar 

  11. A.T. Tabrizi, H. Aghajani, H. Saghafian, and F.F. Laleh, Tribol. Int. 155, 106772 (2021).

    Article  Google Scholar 

  12. I. Vazirgiantzikis, S.L. George, and L. Pichon, Surf. Coat. Technol. 433, 128115 (2022).

    Article  Google Scholar 

  13. C. Hu, Q. Le, and X. Zhou, Mater Charact 189, 111988 (2022).

    Article  Google Scholar 

  14. Y. Zhang, J. Qie, and K. Cui, Ceram. Int. 46, 5223 (2020).

    Article  Google Scholar 

  15. M. Windmann, A. Röttger, and W. Theisen, Surf. Coat. Technol. 246, 17 (2014).

    Article  Google Scholar 

  16. F. Oukati Sadeq, M. Sharifitabar, and M. Shafiee Afarani, Surface Coat. Technol. 337, 349 (2018).

    Article  Google Scholar 

  17. G.P. Cammarota, A. Casagrande, and G. Sambogna, Surf. Coat. Technol. 201, 230 (2006).

    Article  Google Scholar 

  18. H.-P. Xiong, W. Mao, and Y.-H. Xie, Acta Mater. 52, 2605 (2004).

    Article  Google Scholar 

  19. H.P. Xiong, Y.H. Xie, and W. Mao, Scr. Mater. 49, 1117 (2003).

    Article  Google Scholar 

  20. T. Kubatík, M. Jáglová, E. Kalabisová, and V. Číhal, J. Alloy. Compd. 509, 5493 (2011).

    Article  Google Scholar 

  21. K.M. Jasim, and E.S. Dwarakadasa, Wear 119, 119 (1987).

    Article  Google Scholar 

  22. T. Gao, P. Li, Y. Li, and X. Liu, J. Alloy. Compd. 509, 8013 (2011).

    Article  Google Scholar 

  23. S. Ma, N. Li, C. Zhang, and X. Wang, J. Alloy. Compd. 831, 154872 (2020).

    Article  Google Scholar 

  24. Q. Luo, Q. Li, J.-Y. Zhang, S.-L. Chen, and K.-C. Chou, J. Alloy. Compd. 602, 58 (2014).

    Article  Google Scholar 

  25. Y. Li, Q.-F. Gu, and Q. Luo, Mater. Des. 102, 78 (2016).

    Article  Google Scholar 

  26. H. Aghajani, A. Taghizadeh Tabrizi, S. Arabpour Javadi, M.E. Taghizadeh Tabrizi, A. Homayouni, and S. Behrangi, Synth. Sinter. 1, 189 (2021).

    Article  Google Scholar 

  27. S. Arabpour Javadi, S. Nozohour Hokmabadi, A. Taghizadeh Tabrizi, and H. Aghajani, Powder Metall. 64, 341 (2021).

    Article  Google Scholar 

  28. X.T. Li, L.J. Huang, and S. Jiang, J. Alloy. Compd. 807, 151679 (2019).

    Article  Google Scholar 

  29. J. Zhang, Y. Wang, and Z. Lü, Trans. Nonferrous Met. Soc. China 32, 524 (2022).

    Article  Google Scholar 

  30. Z. Chao, and K. Dejun, Diam. Relat. Mater. 133, 109762 (2023).

    Article  Google Scholar 

  31. Q. Wang, N. Kang, and M. El Mansori, Wear 523, 204790 (2023).

    Article  Google Scholar 

  32. X. Xu, Z. Li, and W. Lai, Tribol. Int. 189, 108897 (2023).

    Article  Google Scholar 

  33. M.V. Koricherla, T.B. Torgerson, and S.A. Alidokht, Wear 476, 203746 (2021).

    Article  Google Scholar 

  34. X. Hao, H. Liu, and X. Zhang, Appl. Surf. Sci. 626, 157240 (2023).

    Article  Google Scholar 

  35. Z.Y. Ren, Y.L. Hu, and Y. Tong, Tribol. Int. 182, 108366 (2023).

    Article  Google Scholar 

  36. Y. Bian, L. Cao, and D. Zeng, Surf. Coat. Technol. 456, 129256 (2023).

    Article  Google Scholar 

  37. J. Yuan, Q. Fan, and L. Yang, J. Market. Res. 20, 1 (2022).

    Google Scholar 

  38. S.P. Gupta, Mater Charact 49, 321 (2002).

    Article  Google Scholar 

  39. Y. Wang, Z. Huang, and W. Hu, Mater Charact 178, 111298 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Nation Natural Science Foundation of China (Nos. 51974082, 51901037, 52274377) and the Fundamental Research Funds for the Central Universities (Grant number: N2202018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qichi Le.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Le, Q., Wang, Y. et al. Enhancement in the Wear Resistance of Ti-Al-Si Coatings Fabricated by Hot Dipping. JOM (2024). https://doi.org/10.1007/s11837-024-06545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06545-y

Navigation