Skip to main content
Log in

Enhanced Physical Metallurgy of AlCrNi Medium Entropy Alloy Under Pressure

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In recent years, medium-entropy alloys (MEAs) have received significant focus for their innovative microstructure and design concept; they exhibit numerous excellent characteristics, making them ideal for several structural and functional applications. It is essential in materials science and engineering to explore how pressure affects the mechanical features of MEAs. We use ab initio simulations with Vienna ab initio Simulation Packages (VASP) and Molecular Dynamics (MD) with Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to investigate the dislocation, elastic, and mechanical properties of cubic AlCrNi MEA. Dislocation-related properties include mean square atomic displacement (MSAD), critical resolved shear stress (CRSS), lattice distortion, and yield strength. Initially, numerous physical properties of AlCrNi MEA are determined, including the material’s elastic stiffness, elastic moduli, ductility–brittleness, machinability index, Vickers hardness, Kleinman, as well as various anisotropy parameters. Then we investigate how pressure affects these physical properties. The importance of investigating the effect of pressure on the physical characteristics of AlCrNi MEA is highlighted by our simulation results, particularly for high-pressure applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data sets generated and/or analyzed in this study are available from the corresponding author upon reasonable request.

References

  1. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Nature 534, 227 (2016).

    Article  Google Scholar 

  2. F. Wang, Y. Zhang, G. Chen, and H.A. Davies, Int. J. Mod. Phys. B 23, 1254 (2009).

    Article  Google Scholar 

  3. Y. Zhang, J.P. Liu, S.Y. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, and Y.L. Wang, Prog. Mater. Sci. 90, 358 (2017).

    Article  Google Scholar 

  4. M. Khan, M.Z. Rahaman, and M.L. Ali, J. Appl. Phys. 135, 055103 (2024).

    Article  Google Scholar 

  5. W. Chen, X. Ding, Y. Feng, X. Liu, K. Liu, Z.P. Lu, and X.Q. Chen, J. Mater. Sci. Technol. 34, 355 (2018).

    Article  Google Scholar 

  6. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, and Z.P. Lu, Acta Mater. 102, 187 (2016).

    Article  Google Scholar 

  7. R. Sriharitha, B.S. Murty, and R.S. Kottada, J. Alloys Compd. 583, 419 (2014).

    Article  Google Scholar 

  8. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  9. J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, Mater. Sci. Forum: Trans. Tech. Publ. 560, 1 (2007).

    Article  Google Scholar 

  10. C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, and P.K. Liaw, Acta Mater. 160, 158 (2018).

    Article  Google Scholar 

  11. D.J.M. King, S.C. Middleburgh, A.G. McGregor, and M.B. Cortie, Acta Mater. 104, 172 (2016).

    Article  Google Scholar 

  12. R. Feng, P.K. Liaw, M.C. Gao, and M. Widom, npj Comput. Mater. 3, 50 (2017).

    Article  Google Scholar 

  13. Z. Wen, Y. Zhao, J. Li, and H. Hou, Met. Mater. Inter. 27, 1469 (2021).

    Article  Google Scholar 

  14. H. Ge, F. Tian, and Y. Wang, Comput. Mater. Sci. 128, 185 (2017).

    Article  Google Scholar 

  15. J.P. Perdew and A. Zunger, Phy. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  16. A. Zunger, S.H. Wei, L.G. Ferreira, and J.E. Bernard, Phy. Rev. Lett. 65, 353 (1990).

    Article  Google Scholar 

  17. S.H. Wei, L.G. Ferreira, J.E. Bernard, and A. Zunger, Phy. Rev. B 42, 9622 (1990).

    Article  Google Scholar 

  18. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  19. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Intermetallics 26, 44 (2012).

    Article  Google Scholar 

  20. Y. Zhang, X. Yang, and P.K. Liaw, JOM 64, 830 (2012).

    Article  Google Scholar 

  21. J. Rémy Besson, Alloys Compd. 898, 162842 (2022).

    Article  Google Scholar 

  22. C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM 64, 839 (2012).

    Article  Google Scholar 

  23. F. Tian, L. Delczeg, N. Chen, L.K. Varga, J. Shen, and L. Vitos, Phy. Rev. B 88, 085128 (2013).

    Article  Google Scholar 

  24. T.M. Bhat and D.C. Gupta, J. Electron. Mater. 47, 2042 (2018).

    Article  Google Scholar 

  25. A.K. Singh and A. Subramaniam, J. Alloys Compd. 587, 113 (2014).

    Article  Google Scholar 

  26. W. Hume-Rothery, Indian J. Phy. 11, 74 (1969).

    Google Scholar 

  27. L. Vitos, H.L. Skriver, B. Johansson, and J. Kollár, Comput. Mater. Sci. 18, 24 (2000).

    Article  Google Scholar 

  28. L. Vitos, Phy. Rev. B 64, 014107 (2001).

    Article  Google Scholar 

  29. Q. Zhang, J. Yan, Y. Zhang, and Y. Ke, Phys. Rev. B 100, 075134 (2019).

    Article  Google Scholar 

  30. A. Amudhavalli, R. Rajeswarapalanichamy, and K. Iyakutti, Comput. Mater. Sci. 148, 87 (2018).

    Article  Google Scholar 

  31. R. Akter, M. Khan, M.N.M. Nobin, M.S. Ali, M.M. Hossain, M.Z. Rahaman, and M.L. Ali, Mater. Today Commun. 36, 106630 (2023).

    Article  Google Scholar 

  32. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  33. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  34. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  35. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  36. P.E. Blochlr, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  37. R. Hill, Proc. Phys. Soc. London Sect. A 65, 349 (1952).

    Article  Google Scholar 

  38. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, and T.D. Nguyen, Comput. Phys. Commun. 271, 108171 (2022).

    Article  Google Scholar 

  39. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  40. H. Tsuzuki, P.S. Branicio, and J.P. Rino, Comput. Phys. Commun. 177, 518 (2007).

    Article  Google Scholar 

  41. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Acta Mater. 81, 428 (2014).

    Article  Google Scholar 

  42. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, UK, 2006).

    Book  Google Scholar 

  43. E.J. Pickering and N.G. Jones, Int. Mater. Rev. 61, 183 (2016).

    Article  Google Scholar 

  44. M.L. Ali, RSC Adv. 11, 23719 (2021).

    Article  Google Scholar 

  45. S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, and D. Raabe, Adv. Mater. 31, 1807142 (2019).

    Article  Google Scholar 

  46. N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui, and E.P. George, AIP Adv. 6, 125008 (2016).

    Article  Google Scholar 

  47. J.Y. Wang and Y.C. Zhou, Phys. Rev. B 69, 214111 (2004).

    Article  Google Scholar 

  48. A. Yildirim, H. Koc, and E. Deligoz, Chin. Phys. B 21, 037101 (2012).

    Article  Google Scholar 

  49. D.L. Pu and Y. Pan, Ceram. Int. 47, 2311 (2021).

    Article  Google Scholar 

  50. Y. Pan and W.M. Guan, Int. J. Hydrog. Energy 45, 20032 (2020).

    Article  Google Scholar 

  51. Y. Pan, D. Pu, and G. Liu, Vacuum 175, 109291 (2020).

    Article  Google Scholar 

  52. Y. Pan, Y. Lin, G. Liu, and J. Zhang, Vacuum 174, 109203 (2020).

    Article  Google Scholar 

  53. J.W. Morris Jr., and C.R. Krenn, Philos. Mag. A 80(12), 2827–2840 (2000).

    Article  Google Scholar 

  54. W. Li and C. Wang, Chin. Phys. B 29, 026102 (2020).

    Article  Google Scholar 

  55. Y. Liu, W.C. Hu, D.J. Li, X.Q. Zeng, C.S. Xu, and X.J. Yang, Intermetallics 31, 257 (2012).

    Article  Google Scholar 

  56. M. Jamal, S.J. Asadabadi, I. Ahmad, and H.A.R. Aliabad, Coput. Mater. Sci. 95, 592 (2014).

    Google Scholar 

  57. H. Dong, C. Chen, S. Wang, W. Duan, and J. Li, Appl. Phys. Lett. 102, 182905 (2013).

    Article  Google Scholar 

  58. M. Yaakob, M. Taib, M. Deni, A. Chandra, L. Lu, and M. Yahya, Ceram. Int. 39, 283 (2013).

    Article  Google Scholar 

  59. M. Hadi, M. Roknuzzaman, A. Chroneos, S. Naqib, A. Islam, R. Vovk, and K. Ostrikov, Comput. Mat. Sci. 137, 318 (2017).

    Article  Google Scholar 

  60. A. Gueddouh, B. Bentria, and I. Lefkaier, J. Magn. Magn. Mater. 406, 192 (2016).

    Article  Google Scholar 

  61. M. Mattesini, R. Ahuja, and B. Johansson, Phys. Rev. B 68, 184108 (2003).

    Article  Google Scholar 

  62. S. Boucetta and J. Magnes, Alloy 2, 59 (2014).

    Google Scholar 

  63. S. Huang, R. Li, S.T. Qi, B. Chen, and J. Shen, Phys. Scr. 89, 065702 (2014).

    Article  Google Scholar 

  64. S.F. Pugh, XCII. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823 (1954).

    Article  Google Scholar 

  65. Y. Cao, J.C. Zhu, Y. Liu, Z.S. Nong, and Z.H. Lai, Comput. Mater. Sci. 69, 40 (2013).

    Article  Google Scholar 

  66. Z. Li, S. Zhao, R.O. Ritchie, and M.A. Meyers, Prog. Mater. Sci. 102, 296 (2019).

    Article  Google Scholar 

  67. C. Zener, Elasticity and An elasticity of Metals (University of Chicago Press, Chicago, 1948).

    Google Scholar 

  68. Z. Sun, D. Music, R. Ahuja, and J.M. Schneider, Phy. Rev. B 71, 193402 (2005).

    Article  Google Scholar 

  69. M. Hasan, S. Nasrin, M.N. Islam, and A.K.M.A. Hossain, AIP Adv. 12, 085327 (2022).

    Article  Google Scholar 

  70. S.Y. Liu, S. Zhang, S. Liu, D.J. Li, Y. Li, and S. Wang, J. Eur. Ceram. Soc. 41, 6267 (2021).

    Article  Google Scholar 

  71. X.Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).

    Article  Google Scholar 

  72. M.I. Naher and S.H. Naqib, Res. Phys. 37, 105505 (2022).

    Google Scholar 

  73. S.I. Ranganathan and M. Ostoja-Starzewski, Phy. Rev. Lett. 101, 055504 (2008).

    Article  Google Scholar 

  74. N. Frantsevich, F.F. Voronov, and S.A. Bakuta, Handbook on Elastic Constants and Moduli of Elasticity for Metals and Nonmetals (Naukova Dumka, Kiev, 1982).

    Google Scholar 

  75. C. Kube, AIP Adva. 6, 095209 (2016).

    Article  Google Scholar 

  76. F. Parvin and S.H. Naqib, Res. Phy. 21, 103848 (2021).

    Google Scholar 

  77. R. Gaillac, P. Pullumbi, and F.-X. Coudert, J. Phy. Condens. Matter 28, 275201 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Mithun Khan would like to express gratitude to Md. Nadim Mahamud Nobin and Zahid Hasan for engaging discussions on the mechanical properties of medium-entropy alloys. Additionally, he extends appreciation to the Computational Materials Research Laboratory for providing access to their lab and computers for simulation work.

Author information

Authors and Affiliations

Authors

Contributions

MK: Investigation, methodology, validation, formal analysis, writing-review-editing. Md. LA: Conceptualization, supervision, validation, formal analysis, writing-review-editing.

Corresponding author

Correspondence to Md. Lokman Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Ali, M.L. Enhanced Physical Metallurgy of AlCrNi Medium Entropy Alloy Under Pressure. JOM 76, 3099–3110 (2024). https://doi.org/10.1007/s11837-024-06514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06514-5

Navigation