Skip to main content
Log in

Effect of Cooling Rate on the Solidification Behavior of GH4151

  • Advanced Materials for Extreme Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The new nickel-based superalloy GH4151, with a service temperature capability of up to 800°C, is a most promising materials. Due to the high alloying nature of GH4151, severe microsegregation and precipitation occur during the solidification process, affecting alloy uniformity and even leading to hot cracking during solidification, which is unfavorable for alloy casting. This study investigates the phase precipitation patterns during GH4151 solidification, and the influence of cooling rate on the solidification behavior. It elucidates the sequence of phase precipitation during solidification, alloy constants, and the impact of cooling rate on the microstructure and element segregation during solidification. It was observed that, with increasing cooling rate, the degree of segregation of some alloying elements increases within the range of 3–18°C/min, while it decreases outside this range. Properly increasing the cooling rate results in better as-cast microstructures. This work lays the foundation for future research into the hot cracking mechanisms of GH4151.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, 2008).

    Google Scholar 

  2. Z. Zhou, R. Zhang, C. Cui, Y. Zhou, and X. Sun, Acta Metall. Sin. Engl. https://doi.org/10.1007/s40195-021-01192-7 (2021).

    Article  Google Scholar 

  3. Z. Li, Z. Xia, S. He, F. Wang, X. Wu, Y. Zhang, L. Yan, and F. Jiang, J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2022.11.173 (2023).

    Article  Google Scholar 

  4. C. Joseph, C. Persson, and M.H. Colliander, Mater. Sci. Eng. A Struct. https://doi.org/10.1016/j.msea.2016.10.048 (2017).

    Article  Google Scholar 

  5. S.F. Di Martino, R.G. Faulkner, and S.C. Hogg, J. Mater. Sci. Technol. https://doi.org/10.1080/02670836.2016.1159002 (2017).

    Article  Google Scholar 

  6. J.E. Ramirez, Weld. J. 92, 89 (2013).

    Google Scholar 

  7. J.E. Ramirez, Weld. J. 91, 122 (2012).

    Google Scholar 

  8. J.Q. Zhu, Y.X. Lu, L.G. Sun, S. Huang, L.B. Mei, M.L. Zhu, and F.Z. Xuan, Mater Charact. https://doi.org/10.1016/j.matchar.2023.113095 (2023).

    Article  Google Scholar 

  9. Y. Li, Y. Dong, Z. Jiang, K. Yao, S. Du, Y. Liu, and Z. Hou, J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2022.06.088 (2022).

    Article  Google Scholar 

  10. L. Jia, H. Cui, S. Yang, S. Lv, X. Xie, and J. Qu, J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2023.01.150 (2023).

    Article  Google Scholar 

  11. M.M. Franke, R.M. Hilbinger, C.H. Konrad, U. Glatzel, and R.F. Singer, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-010-0585-8 (2011).

    Article  Google Scholar 

  12. V. Kavoosi, S.M. Abbasi, S.M.G. Mirsaed, and M. Mostafaei, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2016.04.099 (2016).

    Article  Google Scholar 

  13. X.X. Li, C.L. Jia, Y. Zhang, S.M. Lv, and Z.H. Jiang, Trans Nonferrous Met. Soc. https://doi.org/10.1016/s1003-6326(20)65364-x (2020).

    Article  Google Scholar 

  14. X.X. Li, C. L. Jia, Y. Zhang, S.M. LV, and Z.H. Jiang, (2020) Vacuum, 20:300. https://doi.org/10.1016/j.vacuum.2020.109379

  15. R. Fu, F. Li, F. Yin, D. Feng, Z. Tian, and L. Chang, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2015.04.068 (2015).

    Article  Google Scholar 

  16. Q. Wei, Y. Xie, Q. Teng, M. Shen, S. Sun, and C. Cai, Chin. J. Mech. Eng. Addit. Manuf. Front. https://doi.org/10.1016/j.cjmeam.2022.100055 (2022).

    Article  Google Scholar 

  17. S.M. Seo, J.H. Lee, Y.S. Yoo, C.Y. Jo, H. Miyahara, and K. Ogi, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-011-0738-4 (2011).

    Article  Google Scholar 

  18. P. Gao, G. Jing, X. Lan, S. Li, Y. Zhou, Y. Wang, H. Yang, K. Wei, and Z. Wang, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2021.141149 (2021).

    Article  Google Scholar 

  19. Y. Luan, N. Song, Y. Bai, X. Kang, and D. Li, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2009.10.017 (2010).

    Article  Google Scholar 

  20. E.R. Cutler, A.J. Wasson, and G.E. Fuchs, Scr. Mater. https://doi.org/10.1016/j.scriptamat.2007.09.050 (2008).

    Article  Google Scholar 

  21. Q. Li, H. Zhang, Y. Cheng, M. Du, M. Gao, T. Hong, Y. Jin, and H. Zhang, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2022.166390 (2022).

    Article  Google Scholar 

  22. B.C. Wilson, E.R. Cutler, and G.E. Fuchs, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2007.07.030 (2008).

    Article  Google Scholar 

  23. X. Zhao, L. Liu, Z. Yu, W. Zhang, J. Zhang, and H. Fu, J. Mater. https://doi.org/10.1007/s10853-010-4696-9 (2010).

    Article  Google Scholar 

  24. M.J. Zhang, C.B. Xiao, et al. J. Mater. Eng. Perform (2010).

  25. A. Cheng, L. Shusuo, Z. Jian, G. Shengkai, L. Lin, and S. Xuding, Rare Met. Mater. Eng. 46, 3556–3563 (2017).

    Google Scholar 

  26. Zhao J and Ping Y, in Superalloys 718, 625, 706 and Various Derivatives (2001).

  27. T. Froeliger, A. Després, L. Toualbi, D. Locq, M. Veron, G. Martin, and R. Dendievel, Mater Charact. https://doi.org/10.1016/j.matchar.2022.112376 (2022).

    Article  Google Scholar 

  28. X.X. Li, C.L. Jia, Y. Zhang, S.M. Lue, and Z.H. Jiang, Trans. Nonferrous Met. Soc. https://doi.org/10.1016/s1003-6326(20)65413-9 (2020).

    Article  Google Scholar 

  29. K. Liu, J. Wang, Y. Yang, and Y. Zhou, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.160723 (2021).

    Article  Google Scholar 

  30. H. Jiang, X. Xiang, and J. Dong, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2022.167086 (2022).

    Article  Google Scholar 

  31. X. Wang, T. Huang, W. Yang, Q. Yue, C. He, P. Qu, J. Zhang, and L. Liu, Vacuum. https://doi.org/10.1016/j.vacuum.2020.109800 (2021).

    Article  Google Scholar 

  32. S.M. Seo, J.H. Lee, Y.S. Yoo, C.Y. Jo, H. Miyahara, and K. Ogi, in 11th International Symposium on Superalloys, Champion, PA (2008), p. 277.

  33. G. Liu, L. Liu, C. Ai, B. Ge, J. Zhang, and H. Fu, J. Alloys Compd. 509, 5866–5872 (2011).

    Article  Google Scholar 

  34. Z. Jia, B. Wei, C. Jia, Y. Ding, Y. Yang, D. Ling, and H. Chen, Int. J. Adv. Manuf. Technol. https://doi.org/10.1007/s00170-021-07609-y (2021).

    Article  Google Scholar 

  35. A.V. Shulga, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2006.07.051 (2007).

    Article  Google Scholar 

  36. S. Tin, T.M. Pollock, and W. Murphy, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-001-0151-5 (2001).

    Article  Google Scholar 

  37. Z.J. Miao, A.D. Shan, Y.B. Wu, J. Lu, W.L. Xu, and H.W. Song, Trans. Nonferrous Met. Soc. China. https://doi.org/10.1016/S1003-6326(11)60814-5 (2011).

    Article  Google Scholar 

  38. F. Wang, D. Ma, and A. Bührig-Polaczek, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-017-4317-1 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Major Project (J2019-VI-0006-0120) and National Natural Science Foundation of China (52074092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomin Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Lv, S., Xie, X. et al. Effect of Cooling Rate on the Solidification Behavior of GH4151. JOM (2024). https://doi.org/10.1007/s11837-024-06511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06511-8

Navigation