Skip to main content
Log in

Bonding Strength of 12Cr-0.4C/Low Carbon Steel (LCS) Weld Joint After Solid Solution Heat Treatment

  • Microstructure and Defect Development During Rapid Solidification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The metal inert gas (MIG) technique plays a vital role in enhancing the durability and lifespan of 20 steel under harsh operating conditions across various industries. A strong bond is crucial for preventing joint separation. Fe-based materials with appropriate Cr/C exhibit high compatibility with carbon steel bonding. Solid solutions can improve the situation faced by MIG-treated joints. In this work, weld joints were manufactured by MIG, and half of them were treated with a solid solution, and. after the analysis of microstructure and properties, it was found that the untreated fused zone (FZ) showed good forming quality with martensite, retained austenite, and had a carbide microstructure. The solid solution eliminated the retained austenite and exhibited an even hardness. The untreated heat-affected zone had a complex microstructure, dominating upper bainite, and discrepancy-shape ferrite. The untreated group's base material (BM) consisted of grain boundary martensite, ferrite, and pearlite in a matrix, while the solid-solution group's hardness was similar. Tensile tests revealed that the untreated group had a yield strength of 639 MPa, while the solid solution group gained 339 MPa. The untreated group in BM fractures was caused by grain boundary martensite, while the solid-solution group in FZ fractures was caused by α′ and carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.J. Shen, R. Gonalves, Y.T. Choi, J.G. Lopes, J. Yang, N. Schell, H.S. Kim, and J.P. Oliveira, Scr. Mater. https://doi.org/10.1016/j.scriptamat.22.115053 (2022).

    Article  Google Scholar 

  2. J.J. Shen, R. Gonalves, Y.T. Choi, J.G. Lopes, J. Yang, N. Schell, H.S. Kim, and J.P. Oliveira, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2022.144025 (2022).

    Article  Google Scholar 

  3. S. Barzegar-Mohammadi, M. Haghpanahi, M. Zeinoddini, and R. Miresmaeili, J. Market. Res. 22, 3442 https://doi.org/10.1016/j.jmrt.2022.12.146 (2023).

    Article  Google Scholar 

  4. W. Li, S. Qin, Y. Li, Y. Wang, P. Jiang, and W. Tong, J. Market. Res. 11, 1678 https://doi.org/10.1016/j.jmrt.2021.02.007 (2021).

    Article  Google Scholar 

  5. J. Oñoro, J. Mater. Process. Technol. 180, 137 https://doi.org/10.1016/j.jmatprotec.2006.05.014 (2006).

    Article  Google Scholar 

  6. Y. Wu, S. Xia, Q. Bai, W. Sun, B. Wang, Z. Zhou, and T. Liu, Vacuum. https://doi.org/10.1016/j.vacuum.2023.112270 (2023).

    Article  Google Scholar 

  7. J.Y. Yun, G.S. Shin, D.H. Hur, W.S. Kang, C.H. Bae, and S.J. Kim, Wear 368–369, 124 https://doi.org/10.1016/j.wear.2016.09.005 (2016).

    Article  Google Scholar 

  8. H. Fan, P. Liu, X. Guo, X. Wang, and Y. Wang, Int. J. Press. Vessels Pip. J. Press. Vessels Pip. https://doi.org/10.1016/j.ijpvp.2023.104918 (2023).

    Article  Google Scholar 

  9. R. Bush, J. Gill, and J. Teakell, Jom 68, 3167–3173 https://doi.org/10.1007/s11837-016-2117-5 (2016).

    Article  Google Scholar 

  10. L. Pan, C.T. Kwok, and K.H. Lo, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2019.116448 (2020).

    Article  Google Scholar 

  11. D.M. Aditya, H. Ardy, Y.S.F. Lantang, Y.S. Afrianti, N.F.F. Ilmi, and U.S. Pasaribu, Heliyon 9, e14109 https://doi.org/10.1016/j.heliyon.2023.e14109 (2023).

    Article  Google Scholar 

  12. T. He, L. Wang, F. Hu, W. Zhou, Z. Zhang, and K. Wu, J. Market. Res. 22, 2690 https://doi.org/10.1016/j.jmrt.2022.12.092 (2023).

    Article  Google Scholar 

  13. Q. Luo, J. Li, Q. Yan, W. Li, Y. Gao, M. Kitchen, L. Bowen, N. Farmilo, and Y. Ding, Wear. https://doi.org/10.1016/j.wear.2021.203732 (2021).

    Article  Google Scholar 

  14. L. Raami, T. Varis, K. Valtonen, M. Wendler, O. Volkova, and P. Peura, Wear. https://doi.org/10.1016/j.wear.2023.204897 (2023).

    Article  Google Scholar 

  15. X.X. Dong, and Y.F. Shen, Mater. Sci. Eng. A. Sci. Eng. A. https://doi.org/10.1016/j.msea.2022.143737 (2022).

    Article  Google Scholar 

  16. L. Wang, Y. Ding, Q. Lu, Z. Guo, Y. Liu, and Z. Cui, Corros. Commun. 11, 1 https://doi.org/10.1016/j.corcom.2022.08.005 (2023).

    Article  Google Scholar 

  17. Y.C. Li, W.J. Zhu, L.L. Sun, and L.Y. Li, Int. J. Electrochem. Sci. J. Electrochem. Sci. https://doi.org/10.1016/j.ijoes.2023.100295 (2023).

    Article  Google Scholar 

  18. E. Cabrol, C. Boher, V. Vidal, F. Rezaï-Aria, and F. Touratier, Wear 426–427, 996 https://doi.org/10.1016/j.wear.2019.01.091 (2019).

    Article  Google Scholar 

  19. Q. Yang, and J.L. Luo, Mater. Sci. Eng. A 288, 75 https://doi.org/10.1016/s0921-5093(00)00833-9 (2000).

    Article  Google Scholar 

  20. Y. Tian, K. Chadha, S.H. Kim, and C. Aranas, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2021.140801 (2021).

    Article  Google Scholar 

  21. Z. Wang, S. Xu, Q. Sui, J. Wang, H. Wen, T. Xiao, Q. Yuan, S. Mao, B. Yuan, Y. Wu, and J. Liu, Surf. Coat. Technol.. Coat. Technol. https://doi.org/10.1016/j.surfcoat.2023.129474 (2023).

    Article  Google Scholar 

  22. F. Khorasani, R. Jamaati, and H. Jamshidi Aval, Mater. Chem. Phys.. Chem. Phys. https://doi.org/10.1016/j.matchemphys.2023.128246 (2023).

    Article  Google Scholar 

  23. H.V. Ribeiro, M.S.F. Lima, J.B. Marcomini, F.C. Pinto, and C.A.R.P. Baptista, J. Mater. Eng. Perform. 31, 7686 https://doi.org/10.1007/s11665-022-06795-4 (2022).

    Article  Google Scholar 

  24. J. Shen, P. Agrawal, T.A. Rodrigues, J.G. Lopes, N. Schell, J. He, Z. Zeng, R.S. Mishra, and J.P. Oliveira, Mater. Sci. Eng. A. Sci. Eng. A. https://doi.org/10.1016/j.msea.2023.144722 (2023).

    Article  Google Scholar 

  25. K.E. Easterling, Mater. Sci. Eng. 65, 191 https://doi.org/10.1016/0025-5416(84)90212-x (1984).

    Article  Google Scholar 

  26. A. Hamada, A. Khosravifard, M. Ali, S. Ghosh, M. Jaskari, M. Hietala, A. Järvenpää, and M. Newishy, Mater. Sci. Eng. A. Sci. Eng. A. https://doi.org/10.1016/j.msea.2023.145442 (2023).

    Article  Google Scholar 

  27. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, J.G. Thakre, R.S. Vidyarthy, and H.K. Narang, Arch. Civ. Mech. Eng. 18, 713 https://doi.org/10.1016/j.acme.2017.12.002 (2018).

    Article  Google Scholar 

  28. L. Zhao, S. Wei, D. Wu, D. Gao, and S. Lu, J. Mater. Sci. Technol. 57, 33 https://doi.org/10.1016/j.jmst.2020.02.085 (2020).

    Article  Google Scholar 

  29. C. Wang, T.G. Liu, P. Zhu, Y.H. Lu, and T. Shoji, Mater. Sci. Eng. A. Sci. Eng. A. https://doi.org/10.1016/j.msea.2020.140006 (2020).

    Article  Google Scholar 

  30. A. Evangelou, R. Stylianou, A. Loizou, D. Kim, A. Liang, P. Reed, G. Constantinides, and T. Kyratsi, J. Alloys Metallurg. Syst. https://doi.org/10.1016/j.jalmes.2023.100027 (2023).

    Article  Google Scholar 

  31. T. Li, S. Yan, D. An, X. Li, and J. Chen, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2022.117632 (2022).

    Article  Google Scholar 

  32. H. Qin, Z. Bi, H. Yu, G. Feng, J. Du, and J. Zhang, J. Alloys Compd. 740, 997–1006 https://doi.org/10.1016/j.jallcom.2018.01.030 (2018).

    Article  Google Scholar 

  33. Y. Han, S. Zhong, C. Peng, L. Tian, Y. Sun, L. Zhao, and L. Xu, Int. J. Fatigue J. Fatigue. https://doi.org/10.1016/j.ijfatigue.2022.107156 (2022).

    Article  Google Scholar 

  34. J. Liu, P. Yu, P. Chen, S. Chen, R. Lewis, Z. Xu, P. Li, and C. He, Eng. Fail. Anal. Fail. Anal. https://doi.org/10.1016/j.engfailanal.2023.107326 (2023).

    Article  Google Scholar 

  35. P. Sharma, D.K. Dwivedi, and G. Sharma, Mater. Today Proc. https://doi.org/10.1016/j.matpr.2023.08.327 (2023).

    Article  Google Scholar 

  36. X. Gao, X. Lin, T. Guo, L. Xu, Y. Han, B. Jiang, X. Mei, Q. Peng, and L. Qiao, J. Mater. Sci. Technol. 170, 140 https://doi.org/10.1016/j.jmst.2023.06.030 (2024).

    Article  Google Scholar 

  37. D. Zhao, F. Liu, Y.-B. Tan, W. Shi, and S. Xiang, J. Market. Res. 26, 71 https://doi.org/10.1016/j.jmrt.2023.07.202 (2023).

    Article  Google Scholar 

  38. J. Li, Y. Ni, H. Wang, and J. Mei, Nanoscale Res. Lett. 5, 420 https://doi.org/10.1007/s11671-009-9500-x (2009).

    Article  Google Scholar 

  39. C. Wang, Y. Yu, J. Yu, Y. Zhang, Y. Zhao, and Q. Yuan, J. Manuf. Process. 50, 183 https://doi.org/10.1016/j.jmapro.2019.12.015 (2020).

    Article  Google Scholar 

  40. M.P. Prabakaran, and G.R. Kannan, Int. J. Press. Vessels Pip. J. Press. Vessels Pip. https://doi.org/10.1016/j.ijpvp.2021.104322 (2021).

    Article  Google Scholar 

  41. J. Abraham Mathews, J. Sietsma, R.H. Petrov, and M.J. Santofimia, J. Mater. Res. Technol. 25, 5325 https://doi.org/10.1016/j.jmrt.2023.06.270 (2023).

    Article  Google Scholar 

  42. G. Dak, S. Sirohi, and C. Pandey, Int. J. Press. Vessels Pip. J. Press. Vessels Pip. https://doi.org/10.1016/j.ijpvp.2022.104629 (2022).

    Article  Google Scholar 

  43. D.R. Pissanti, A. Scheid, L.F. Kanan, G. Dalpiaz, and C.E.F. Kwietniewski, Mater. Des. 162, 198 https://doi.org/10.1016/j.matdes.2018.11.046 (2019).

    Article  Google Scholar 

  44. A. Sharma, D. Kant Verma, and S. Kumaran, Mater. Today Proc. 5, 8049 https://doi.org/10.1016/j.matpr.2017.11.490 (2018).

    Article  Google Scholar 

  45. J. Ren, C. Li, Y. Han, E. Li, C. Gao, and C. Qiu, Mater. Sci. Eng. A. Sci. Eng. A. https://doi.org/10.1016/j.msea.2021.141080 (2021).

    Article  Google Scholar 

  46. Z. Zhu, X. Ma, C. Wang, G. Mi, and S. Zheng, Mater. Des. https://doi.org/10.1016/j.matdes.2020.108893 (2020).

    Article  Google Scholar 

  47. K. Yvell, T.M. Grehk, and G. Engberg, Mater Charact 122, 14–21 https://doi.org/10.1016/j.matchar.2016.10.017 (2016).

    Article  Google Scholar 

  48. X.J. Sun, S.F. Yuan, Z.J. Xie, L.L. Dong, C.J. Shang, and R.D.K. Misra, Mater. Sci. Eng. A 689, 212–219 https://doi.org/10.1016/j.msea.2017.02.058 (2017).

    Article  Google Scholar 

  49. B. Gao, L. Wang, Y. Liu, J. Liu, L. Xiao, Y. Sui, W. Sun, X. Chen, and H. Zhou, Mater. Sci. Eng. A. Sci. Eng. A. https://doi.org/10.1016/j.msea.2023.145370 (2023).

    Article  Google Scholar 

  50. Z. Wang, and M.X. Huang, Int. J. Plast. J. Plast. https://doi.org/10.1016/j.ijplas.2020.102851 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51974091), the Hainan Province Science and Technology Special Fund (ZDYF2023090), Hainan Province Science and Technology Innovation Joint Project (2021CXLH0001), the Natural Science Foundation of Heilongjiang Province (LH2023E016) and the Youth Science Fund and Research Startup Fund of Northeast Petroleum University (2020QNL-09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongcun Li or Sheng Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Wang, Y., Zhou, J. et al. Bonding Strength of 12Cr-0.4C/Low Carbon Steel (LCS) Weld Joint After Solid Solution Heat Treatment. JOM (2024). https://doi.org/10.1007/s11837-024-06506-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06506-5

Navigation