Skip to main content
Log in

Li-doped P3-type Mn-Ni-Based Cathodes with Improved Electrochemical Performance for Na-ion Batteries

  • Interface Engineering and Property Functionalization
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The Mn-Ni-based oxides used as cathodes for Na-ion batteries (NIBs) are inexpensive and exhibit high capacities, but the Jahn–Teller distortions of Mn3+ rapidly decrease the capacity. Here, Li-doped P3-type Na2/3Ni1/3Mn2/3O2 (named Li-NaNMO) was prepared with a microwave-assisted sol–gel method. After structural analyses, we found that Li doping decreased the content of Mn3+ and replaced it with Mn4+, the content of Mn3+ was reduced from 66.2% for NaNMO to 32.4% for Li-NaNMO, the content of Mn4+ was increased from 33.8% to 67.6%, and the content of Ni2+ varied to balance the charge, which was verified with XRD and XPS results. As the cathode of a Na-ion battery (NIB), NaNMO showed a capacity retention rate of 60% after the 100th cycle over the voltage range 2.0–4.2 V, while Li-NaNMO exhibited good cycling stability and 90% retention under the same testing conditions, which resulted from suppression of the Jahn–Teller effect and the improved conductivity. It also displayed a good rate performance (73 mAh/g at 200 mA/g), and the increased conductivity was confirmed by an EIS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. K. Wang, H. Zhuo, J. Wang, F. Poon, X. Sun, and B. Xiao, Adv. Func. Mater. 33, 2212607 (2023).

    Article  Google Scholar 

  2. S. Qiao, Q. Zhou, M. Ma, H.K. Liu, S.X. Dou, and S. Chong, ACS Nano 17, 11220 (2023).

    Article  Google Scholar 

  3. Z.-Y. Gu, X.-T. Wang, Y.-L. Heng, K.-Y. Zhang, H.-J. Liang, J.-L. Yang, E.H. Ang, P.-F. Wang, Y. You, F. Du and X.-L. Wu, Science Bulletin (2023).

  4. L. Li, P. Nie, Y. Chen, and J. Wang, J. Mater. Chem. A 7, 12134 https://doi.org/10.1039/C9TA01965K) (2019).

    Article  Google Scholar 

  5. Q. Ni, L. Zheng, Y. Bai, T. Liu, H. Ren, H. Xu, C. Wu, and J. Lu, ACS Energy Lett. 5, 1763 (2020).

    Article  Google Scholar 

  6. R. Sun, and Y. You, ACS Appl. Mater. Interfaces 15, 44599 (2023).

    Article  Google Scholar 

  7. P. Zheng, J. Su, Y. Wang, W. Zhou, J. Song, Q. Su, N. Reeves-McLaren, and S. Guo, Chemsuschem 13, 1793 (2020).

    Article  Google Scholar 

  8. L. Gao, S. Chen, L. Zhang, and X. Yang, J. Alloy. Compd. 782, 81 (2019).

    Article  Google Scholar 

  9. M.A. Khan, D. Han, G. Lee, Y.-I. Kim, and Y.-M. Kang, J. Alloy. Compd. 771, 987 (2019).

    Article  Google Scholar 

  10. M. Li, T. Liu, X. Bi, Z. Chen, K. Amine, C. Zhong, and J. Lu, Chem. Soc. Rev. https://doi.org/10.1039/C8CS00426A) (2020).

    Article  Google Scholar 

  11. J. Zhang, W. Wang, W. Wang, S. Wang, and B. Li, ACS Appl. Mater. Interfaces 11, 22051 (2019).

    Article  Google Scholar 

  12. L. Yu, Y.-X. Chang, M. Liu, Y.-H. Feng, D. Si, X. Zhu, X.-Z. Wang, P.-F. Wang, and S. Xu, ACS Appl. Mater. Interfaces 15, 23236 (2023).

    Article  Google Scholar 

  13. Y.-N. Zhou, P.-F. Wang, X.-D. Zhang, L.-B. Huang, W.-P. Wang, Y.-X. Yin, S. Xu, and Y.-G. Guo, ACS Appl. Mater. Interfaces 11, 24184 (2019).

    Article  Google Scholar 

  14. S. Sun, X. Li, L. Yan, W. Chen, X. Lu, and Y. Bai, ACS Energy Lett. 8, 4349 (2023).

    Article  Google Scholar 

  15. J. Gao, H. Guo, X. Jiao, Z.-Y. Li, X. Ma, X. Hu, Q. Huang, K. Sun, and D. Chen, ACS Appl. Energy Mater. 6, 5753 (2023).

    Article  Google Scholar 

  16. S. Yuan, L. Yu, G. Qian, Y. Xie, P. Guo, G. Cui, J. Ma, X. Ren, Z. Xu, S.-J. Lee, J.-S. Lee, Y. Liu, Y. Ren, L. Li, G. Tan, and X. Liao, Nano Lett. 23, 1743 (2023).

    Article  Google Scholar 

  17. L. Zheng, Z. Wang, M. Wu, B. Xu, and C. Ouyang, J. Mater. Chem. A 7, 6053 https://doi.org/10.1039/C8TA11955D) (2019).

    Article  Google Scholar 

  18. X. Li, X. Ma, D. Su, L. Liu, R. Chisnell, S.P. Ong, H. Chen, A. Toumar, J.-C. Idrobo, Y. Lei, J. Bai, F. Wang, J.W. Lynn, Y.S. Lee, and G. Ceder, Nat. Mater. 13, 586 (2014).

    Article  Google Scholar 

  19. J.B. Goodenough, Annu. Rev. Mater. Sci. 28, 1 (1998).

    Article  Google Scholar 

  20. P. Hou, M. Dong, Z. Lin, Z. Sun, M. Gong, F. Li, and X. Xu, ACS Sustain. Chem. Eng. 11, 10785 (2023).

    Article  Google Scholar 

  21. Y. Wang, X. Wang, X. Li, R. Yu, M. Chen, K. Tang, and X. Zhang, Chem. Eng. J. 360, 139 (2019).

    Article  Google Scholar 

  22. Y.-N. Zhou, Z. Xiao, D. Han, S. Wang, J. Chen, W. Tang, M. Yang, L. Shao, C. Shu, W. Hua, D. Zhou, and Y. Wu, J. Mater. Chem. A 11, 2618 https://doi.org/10.1039/D2TA09277H) (2023).

    Article  Google Scholar 

  23. L. Li, G. Su, C. Lu, X. Ma, L. Ma, H. Wang, and Z. Cao, Chem. Eng. J. 446, 136923 (2022).

    Article  Google Scholar 

  24. L. Yang, X. Li, J. Liu, S. Xiong, X. Ma, P. Liu, J. Bai, W. Xu, Y. Tang, Y.-Y. Hu, M. Liu, and H. Chen, J. Am. Chem. Soc. 141, 6680 (2019).

    Article  Google Scholar 

  25. J. Xiao, Y. Xiao, J. Li, C. Gong, X. Nie, H. Gao, B. Sun, H. Liu and G. Wang, SmartMat, 4, e1211 (2023).

  26. Q.-C. Wang, J.-K. Meng, X.-Y. Yue, Q.-Q. Qiu, Y. Song, X.-J. Wu, Z.-W. Fu, Y.-Y. Xia, Z. Shadike, J. Wu, X.-Q. Yang, and Y.-N. Zhou, J. Am. Chem. Soc. 141, 840 (2019).

    Article  Google Scholar 

  27. Y. Zhong, X. Xia, J. Zhan, X. Wang, and J. Tu, J. Mater. Chem. A 4, 11207 https://doi.org/10.1039/C6TA05069G) (2016).

    Article  Google Scholar 

  28. A.T. Ta, V.N. Nguyen, T.T.O. Nguyen, H.C. Le, D.T. Le, T.C. Dang, M.T. Man, S.H. Nguyen, and D.L. Pham, Ceram. Int. 45, 17023 (2019).

    Article  Google Scholar 

  29. B. Mortemard de Boisse, S.-I. Nishimura, E. Watanabe, L. Lander, A. Tsuchimoto, J. Kikkawa, E. Kobayashi, D. Asakura, M. Okubo, and A. Yamada, Adv. Energy Mater. 8, 1800409 (2018).

    Article  Google Scholar 

  30. R. Luo, F. Wu, M. Xie, Y. Ying, J. Zhou, Y. Huang, Y. Ye, L. Li, and R. Chen, J. Power. Sources 383, 80 (2018).

    Article  Google Scholar 

  31. J. Vergnet, M. Saubanère, M.-L. Doublet, and J.-M. Tarascon, Joule 4, 420 (2020).

    Article  Google Scholar 

  32. E. Goikolea, V. Palomares, S. Wang, I.R. de Larramendi, X. Guo, G. Wang and T. Rojo, Adv. Energy Mater., 10, 2002055 (2020).

  33. C. Zhao, Y. Lu, L. Chen, and Y.-S. Hu, Nano Res. 12, 2018 (2019).

    Article  Google Scholar 

  34. P. Zheng, T. Liu, and S. Guo, Sci. Rep. 6, 35620 (2016).

    Article  Google Scholar 

  35. Z.-D. Hou, Y.-Y. Gao, Y. Zhang, and J.-G. Wang, New Carbon Mater. 38, 230 (2023).

    Article  Google Scholar 

  36. S. Huang, X.-Q. Qiu, C.-W. Wang, L. Zhong, Z.-H. Zhang, S.-S. Yang, S.-R. Sun, D.-J. Yang, and W.-L. Zhang, New Carbon Mater. 38, 40 (2023).

    Article  Google Scholar 

  37. J.-M. Xie, R. Zhuang, Y.-X. Du, Y.-W. Pei, D.-M. Tan, and F. Xu, New Carbon Mater. 38, 305 (2023).

    Article  Google Scholar 

Download references

Funding

This research was funded by “Natural Science Foundation of Shaanxi Province (Grant No. 2022JQ-302)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhao, X., Li, N. et al. Li-doped P3-type Mn-Ni-Based Cathodes with Improved Electrochemical Performance for Na-ion Batteries. JOM (2024). https://doi.org/10.1007/s11837-024-06505-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06505-6

Navigation