Skip to main content
Log in

Experimental Investigation on the Purification of Natural Flake Graphite with Auxiliary Alkali-Acid Method

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

As a non-metallic material, high-purity graphite has been widely used in many high-tech fields and has become an important raw material for its production and processing. As the purity of graphite increases, its application value will also increase. Therefore, it is necessary to purify graphite. In this study, the natural flake graphite is purified by the additive-assisted alkali melting-acid leaching process to produce high-purity graphite. Alkali melting is the main process in the alkali-acid process. Therefore, this paper is mainly to explore the removal mechanism of impurities in the alkali melting process. First, the influence of various factors on the purification efficiency in the process of alkali melting is investigated. The fixed carbon content of graphite can reach 99.9815% and 99.9569%, respectively, when 4% (accounting for graphite mass) of sodium metaborate and potassium pyrosulfate is added as additives under the best process conditions. The results show that the crystal structure and morphology of graphite have no obvious changes. Compared with the traditional alkaline melting-acid leaching process, the carbon content of natural flake graphite can be increased to a higher level by an auxiliary alkaline melting-acid leaching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Deng, Z. Gu, L. Wu, Y. Zhang, Y. Tong, F. Meng, L. Sun, H. Zhang, and H. Liu, Sep. Purif. Technol. 326, 124771 (2023).

    Article  Google Scholar 

  2. J. Yu, M. Jiang, W. Zhang, G. Li, R.A. Soomro, N. Sun, and B. Xu, Small Methods 7, 2300708 (2023).

    Article  Google Scholar 

  3. H.L. Andersen, L. Djuandhi, U. Mittal, and N. Sharma, Adv. Energy Mater. 11, 2102693 (2021).

    Article  Google Scholar 

  4. A.R. Kamali and H. Zhao, J. Alloys Compd. 949, 169819 (2023).

    Article  Google Scholar 

  5. A.D. Jara and J.Y. Kim, Mater. Today Commun. 25, 101437 (2020).

    Article  Google Scholar 

  6. S. Chehreh Chelgani, M. Rudolph, R. Kratzsch, D. Sandmann, and J. Gutzmer, Miner. Process. Extr. Metall. Rev. 37, 58 (2015).

    Article  Google Scholar 

  7. H. Li, Q. Feng, L. Ou, S. Long, M. Cui, and X. Weng, Int. J. Min. Sci. Technol. 23, 855 (2013).

    Article  Google Scholar 

  8. C. Bao, K. Shi, P. Xu, L. Yang, H. Chen, Y. Dai, and H. Liu, Diam. Relat. Mater. 120, 108704 (2021).

    Article  Google Scholar 

  9. F.A. Al-Sairafi, C. Jiang, Z. Zhong, and B. Saleh, Adv. Mater. Technol. 8, 4564 (2022).

    Google Scholar 

  10. H.M.H.D.K. Naranpanawa, T.H.N.G. Amaraweera, N.W.B. Balasooriya, A.N.B. Attanayake, and H.W.M.A.C. Wijayasinghe, Ionics 29, 129 (2022).

    Article  Google Scholar 

  11. X. Zhou, Y. Yang, J. Ma, K. Zhang, J. Song, L. Wang, B. Liu, J. Zhang, Z. Lu, and Y. Tang, Nucl. Eng. Des. 360, 110527 (2020).

    Article  Google Scholar 

  12. A.D. Jara, A. Betemariam, G. Woldetinsae, and J.Y. Kim, Int. J. Min. Sci. Technol. 29, 671 (2019).

    Article  Google Scholar 

  13. K. Shen, X. Chen, W. Shen, Z.-H. Huang, B. Liu, and F. Kang, Carbon 173, 769 (2021).

    Article  Google Scholar 

  14. S. Yang, S. Zhang, W. Dong, and Y. Xia, Mater. Res. Express. 9, 025505 (2022).

    Article  Google Scholar 

  15. W. Xie, Z. Wang, J.C. Kuang, H. Xu, S.H. Yi, Y.J. Deng, T.S. Cao, and Z.H. Guo, Int. J. Miner. Process. 155, 45 (2016).

    Article  Google Scholar 

  16. H. Wang, Q. Feng, K. Liu, K. Zuo, and X. Tang, Sep. Sci. Technol. 53, 982 (2017).

    Article  Google Scholar 

  17. C.P.B. Araujo, C.M. Barbosa, M.V.M. Souto, A.B. Vital, T.E.B. Ramalho, C.P.D. Souza, and U.U. Gomes, Miner. Eng. 170, 107073 (2021).

    Article  Google Scholar 

  18. F. Chen, H. Jiang, X. Bai, and W. Zheng, J. Ind. Eng. Chem. 19, 450 (2013).

    Article  Google Scholar 

  19. G.J. Zhou, M. Yang, and L.L. Liu, J. Heilongjiang Univ. Sci. Technol. 24, 388 (2014).

    Google Scholar 

  20. H.X. Fang, C.C. Zhou, S.H. Xu, J.Q. Shi, Y.H. Hu, and G.J. Liu, J. Clean. Prod. 423, 138841 (2023).

    Article  Google Scholar 

  21. Z.Y. Tong, L. Liu, Z.T. Yuan, J.T. Liu, J.T. Lu, and L.X. Li, Miner. Eng. 169, 106959 (2021).

    Article  Google Scholar 

  22. Y. Zhang, Z. Chen, K. Xie, X. Chen, Y. Hu, and W. Ma, Metals 13, 1180 (2023).

    Article  Google Scholar 

  23. S.Z. Duan, X.W. Wu, Y.F. Wang, J. Feng, S.Y. Hou, Z.H. Huang, K. Shen, Y.X. Chen, H.B. Liu, and F.Y. Kang, New Carbon Mater. 38, 73 (2023).

    Article  Google Scholar 

  24. W. Tan, Y. Liu, L. Liu, R. Xing, and G. Zhu, Korean J. Chem. Eng. 33, 3251 (2016).

    Article  Google Scholar 

  25. Y. Gao, J. Zhang, Y. Chen, L. Wang, and C. Wang, Renew. Energy 204, 290 (2023).

    Article  Google Scholar 

  26. H. Zhang, H. Li, A. Feng, Z. Guo, and Y. Zhang, Can. Metall. Q. 57, 245 (2017).

    Article  Google Scholar 

  27. F. Ma, B. Song, and Y. Tao, Part. Sci. Technol. 41, 411 (2022).

    Article  Google Scholar 

  28. K. Shen, Z.-H. Huang, K. Hu, W. Shen, S. Yu, J. Yang, G. Yang, and F. Kang, Carbon 90, 197 (2015).

    Article  Google Scholar 

  29. H. Ri, K. Ri, K. Kim, K. Ri, J. Yu, K. Pak, D. Choe, S. Kang, and S. Hong, Miner. Eng. 188, 107852 (2022).

    Article  Google Scholar 

  30. K. Sun, Y. Qiu, and L. Zhang, Minerals 7, 115 (2017).

    Article  Google Scholar 

  31. W. Peng, H. Li, Y. Hu, Y. Liu, and S. Song, Mater. Res. Bull. 74, 333 (2016).

    Article  Google Scholar 

  32. H. Wang, Q. Feng, X. Tang, K. Zuo, and K. Liu, Minerals 7, 196 (2017).

    Article  Google Scholar 

  33. K. Yang, P. Gong, X. Xin, Z. Tian, and Y. Lai, J. Taiwan Inst. Chem. Eng. 116, 121 (2020).

    Article  Google Scholar 

  34. J.H. Li, S.Y. Hou, J.R. Su, K. Li, L.B. Wei, L.Q. Ma, W.C. Shen, F.Y. Kang, and Z.H. Huang, New Carbon Mater. 34, 205 (2019).

    Article  Google Scholar 

  35. H. Zhao, J. Ren, X. He, J. Li, C. Jiang, and C. Wan, Electrochim. Acta 52, 6006 (2007).

    Article  Google Scholar 

  36. S. Zhao, S. Cheng, B. Xing, M. Ma, C. Shi, G. Cheng, W. Meng, and C. Zhang, J. Mater. Res. Technol 21, 4212 (2022).

    Article  Google Scholar 

  37. Z. Peng, D. Li, W. Fang, J. Zhang, R. Zhang, Y. Qiu, and K. Sun, Separations 10, 275 (2023).

    Article  Google Scholar 

  38. D. Li, X. Jiang, S. Wang, F. Zhao, W. Jiang, and W. Liu, Fuel Process. Technol. 191, 223 (2019).

    Article  Google Scholar 

  39. S.D. Barma, P.K. Baskey, D.S. Rao, and S.N. Sahu, Ultrason. Sonochem. 56, 386 (2019).

    Article  Google Scholar 

  40. C. Guo, L. Zhao, J. Yang, K. Wang, and J. Zou, J. Clean. Prod. 271, 122703 (2020).

    Article  Google Scholar 

  41. C. Liu, S. Ma, J. Ding, Y. Luo, S. Zheng, and Y. Zhang, Trans. Nonferrous Met. Soc. China 29, 868 (2019).

    Article  Google Scholar 

  42. S.K. Lee and S. Sung, Chem. Geol. 256, 326 (2008).

    Article  Google Scholar 

  43. Z. Bian, Z. Ning, K. Zhao, R. Gao, W. Li, C. Lv, Y. Yuan, and H. Li, J. Sustain. Metall. 8, 1988 (2022).

    Article  Google Scholar 

  44. H. Li, J. Hui, C. Wang, W. Bao, and Z. Sun, Hydrometallurgy 147–148, 183 (2014).

    Article  Google Scholar 

  45. A.A. Dehghan, M. Masihi, and S. Ayatollahi, Energy Fuels 29, 649 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Project of Heilongjiang Province (GA22A101), the Key Program of Jixi Natural Science Foundation (JKZZ2022R02; JKZT2022R01), Research Project of Heilongjiang Transportation Investment Group Co., Ltd. (JT-100,000-ZC-FW-2022-0086), and Heilongjiang Postdoctoral Science Foundation funded project (LBH-Z23125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinling Yin or Guiling Wang.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 280 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yin, J., Zhao, J. et al. Experimental Investigation on the Purification of Natural Flake Graphite with Auxiliary Alkali-Acid Method. JOM 76, 2586–2594 (2024). https://doi.org/10.1007/s11837-024-06493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06493-7

Navigation