Skip to main content
Log in

Recovery of Iron and Alumina from Iron-Rich Bauxite, Red Mud, and Fly Ash by Reduction Smelting with Steel Slag

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

High iron bauxite (IRB), red mud (RM), and fly ash (FA) are resources rich in iron and alumina, yet there are no effective methods of recovering and utilizing them. In this paper, a new reduction smelting technology for the extraction of iron and alumina from IRB, RM, and FA is proposed based on the technology platform of “Slag Metallurgy, Mineral Recycling, and Resource Recovery”. For the first time, molten steel slag (SS) was used in the alumina extraction process, which not only recovered the heat resource and iron from SS but also recycled the activated calcium oxide. The phase evolution and composition during the reduction smelting process were analyzed based on the phase diagram of the CaO-Al2O3-SiO2 system, and the composition triangle was determined to be C2S-C12A7-CA. Experiments were carried out to test the raw materials and formulations supplied by different manufacturers, and the alumina extraction rate reached 85% in all cases, while the iron recovery rate reached 95%. This proposed method promotes the sustainable use of energy and resources and has a promising future for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Zhang, Y. Qi, and J. Li. https://doi.org/10.5772/intechopen.78789 (2018)

  2. N. Papassiopi, K. Vaxevanidou, and I. Paspaliaris, Miner. Eng. 23, 25 https://doi.org/10.1016/j.mineng.2009.09.005 (2010).

    Article  Google Scholar 

  3. C.A. Pickles, T. Lu, and B. Chambers, J. Forster Can. Metall. Q. 51, 424 https://doi.org/10.1179/1879139512y.0000000038 (2012).

    Article  Google Scholar 

  4. J. Ding, S.H. Ma, S. Shen, Z.L. Xie, S.L. Zheng, and Y. Zhang, Waste Manag. 60, 375 https://doi.org/10.1016/j.wasman.2016.06.009 (2017).

    Article  Google Scholar 

  5. H. Wen, Y. Wu, Y. Wang, L. Li, and X. Ma, J. Cryst. Growth 614, 127215 https://doi.org/10.1016/j.jcrysgro.2023.127215 (2023).

    Article  Google Scholar 

  6. G. Power, M. Graefe, and C. Klauber, Hydrometallurgy 108, 33 https://doi.org/10.1016/j.hydromet.2011.02.006 (2011).

    Article  Google Scholar 

  7. X. Li, Z. Yang, S. Yang, K. Zhang, and J. Chang, J. Environ. Manag. 344, 118616 https://doi.org/10.1016/j.jenvman.2023.118616 (2023).

    Article  Google Scholar 

  8. F. Lyu, Y. Hu, L. Wang, and W. Sun, J. Hazard. Mater. 403, 123671 https://doi.org/10.1016/j.jhazmat.2020.123671 (2021).

    Article  Google Scholar 

  9. G. Zhou, Y. Wang, T. Qi, Q. Zhou, G. Liu, Z. Peng, and X. Li, J. Environ. Chem. Eng. 11, 109433 https://doi.org/10.1016/j.jece.2023.109433 (2023).

    Article  Google Scholar 

  10. T.R. Zonouz, B. Rezai, Z. Bahri, and A.A. Jahromi, J. Sustain. Metall. 9, 511 https://doi.org/10.1007/s40831-023-00661-w (2023).

    Article  Google Scholar 

  11. G.N. Banerjee, B.R. Reddy, and R.B. Rao, Trans. Ind. Inst. Met. 53, 527 (2000).

    Google Scholar 

  12. Z. Liu, M. Chu, Z. Wang, W. Zhao, and J. Tang, High Temp. Mater. Process. 36, 79 https://doi.org/10.1515/htmp-2015-0005 (2017).

    Article  Google Scholar 

  13. S. Yuan, R. Wang, H. Zhang, Y. Li, L. Liu, and Y. Fu, Sustainability 14, 13787 https://doi.org/10.3390/su142113787 (2022).

    Article  Google Scholar 

  14. F. Gao, J. Zhang, X. Deng, K. Wang, C. He, X. Li, and Y. Wei, Jom 71, 2936 https://doi.org/10.1007/s11837-018-3311-4 (2019).

    Article  Google Scholar 

  15. S. Agrawal, V. Rayapudi, and N. Dhawan, Miner. Eng. 132, 202 https://doi.org/10.1016/j.mineng.2018.12.012 (2019).

    Article  Google Scholar 

  16. G. Lu, T. Zhang, X. Wang, X. Zhang, Y. Liu, Q. Zhao, and Z. Dou, J. Cent. South Univ. 21, 2168 https://doi.org/10.1007/s11771-014-2167-1 (2014).

    Article  Google Scholar 

  17. Q. Long, J. Li, C. Chen, Y. Lan, and G. Wei, J. Iron. Steel Res. Int. 27, 310 https://doi.org/10.1007/s42243-019-00360-5 (2020).

    Article  Google Scholar 

  18. Y. Zhang, Q. Gao, J. Zhao, M. Li, and Y. Qi, Minerals 9, 223 https://doi.org/10.3390/min9040223 (2019).

    Article  Google Scholar 

  19. Y. Zhang, W. Lu, Y. Qi, and Z. Zou, Int. J. Miner. Metall. Mater. 23, 881 https://doi.org/10.1007/s12613-016-1303-3 (2016).

    Article  Google Scholar 

  20. A. Lazou, L. Kolbeinsen, and J. Safarian, Materials 14, 7740 https://doi.org/10.3390/ma14247740 (2021).

    Article  Google Scholar 

  21. K. Wang, Y. Liu, X. Li, Z. Dou, G. Lu, and T.A. Zhang. In: Eskin, D. (eds) Light Metals 2022. The Minerals, Metals & Materials Series. Springer, Cham. 41–47, (2022). https://doi.org/10.1007/978-3-030-92529-1_6

  22. M.S. Archambo and S.K. Kawatra, Metall. Rev. 42, 222 https://doi.org/10.1080/08827508.2020.1720982 (2021).

    Article  Google Scholar 

  23. Y. Ma, J.B. Pettersen, A. Preveniou, and A. Kladis, J. Clean. Prod. 366, 1 https://doi.org/10.1016/j.jclepro.2022.132807 (2022).

    Article  Google Scholar 

  24. L. Zhang, Y. Zhang, and X. Zhou. Shenyang, CN112707424A[P]. 2021-04-27

  25. H. Sun, B. Wang, J. Zhang, S. Zong, and J. Liu, Trans. Nonferrous Met. Soc. 25, 1334 https://doi.org/10.1016/s1003-6326(15)63732-3 (2015).

    Article  Google Scholar 

  26. M. Kowalski, P. J. Spencer, and D. Neutschutz: Slag Atlas, ed. by VDEh, Verlag Stahleisen GmbH, Düsseldorf, Germany, 105 (1995).

  27. Q. Shu, Y. Wang, J. Li, Y. Liu, P. Li, and K. Chou, ISIJ Int. 55, 2297 https://doi.org/10.2355/isijinternational.ISIJINT-2015-211 (2015).

    Article  Google Scholar 

  28. M.K. Kar and J. Safarian, Processes 11, 137 https://doi.org/10.3390/pr11010137 (2023).

    Article  Google Scholar 

  29. H. Wang, C. Liu, H.-W. Xing, J.-H. Wu, W.-L. Lin, S. Li, G.-H. Ding, and Y.-Z. Zhang, J. Iron. Steel Res. Int. 29, 783 https://doi.org/10.1007/s42243-021-00641-y (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Science and Technology Support Program of China (No. 2015BAB18B00) and the Key Research and Development Program of Hebei Province (20311008D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 224 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhang, Y., Xu, S. et al. Recovery of Iron and Alumina from Iron-Rich Bauxite, Red Mud, and Fly Ash by Reduction Smelting with Steel Slag. JOM 76, 2457–2467 (2024). https://doi.org/10.1007/s11837-024-06487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06487-5

Navigation