Skip to main content
Log in

High-Number-Density Coherent Nanoprecipitates Induce Superelasticity in a Fe-Ni-Co-Al-Based Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this paper, the evolution of microstructure and mechanical properties in the Fe-28Ni-20Co-11.5Al-2.5Ta-0.05B (at.%) alloy were systematically studied. The findings elucidate that the absence of thermoelastic martensitic transformation following cyclic loading signifies the lack of superelasticity in solid solution state. Subsequent to the 72 h aging process at 600°C, the emergence of small (4 ± 2 nm) Ni3Al precipitates with an L12 structure was observed within the grains. The degree of misfit between the precipitate and matrix was found to be only 0.28%. The precipitates contribute to the strength through ordering strengthening, ultimately increasing the strength of austenite. In the method this study introduces, there is neither a need for significant cold rolling deformation and prolonged annealing to form specific recrystallization texture nor preparation of large grain sized specimens equivalent to single crystals. The coherent relationship between the Ni3Al phase and matrix induces the occurrence of thermoelastic martensitic transformation, which results in a 1.3% superelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. J. Ma, B. Kockar, A. Evirgen, I. Karaman, Z. Luo, and Y. Chumlyakov, Acta Mater. 60, 2186–2195 https://doi.org/10.1016/j.actamat.2011.12.047 (2012).

    Article  Google Scholar 

  2. C. Cisse, W. Zaki, and T.B. Zineb, Int. J. Plast. 76, 244–284 https://doi.org/10.1016/j.ijplas.2015.08.006 (2016).

    Article  Google Scholar 

  3. L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, H. Purnawali, and C. Tang, Mater. Des. 33, 577–640 https://doi.org/10.1016/j.matdes.2011.04.065 (2012).

    Article  Google Scholar 

  4. F. Masdeu, J. Pons, Y. Chumlyakov, and E. Cesari, Mater. Sci. Eng. A 805, 140543 https://doi.org/10.1016/j.msea.2020.140543 (2021).

    Article  Google Scholar 

  5. J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, Mater. Des. 1980–2015(56), 1078–1113 https://doi.org/10.1016/j.matdes.2013.11.084 (2014).

    Article  Google Scholar 

  6. W. Zhang, S. Ao, J.P. Oliveira, Z. Zeng, Z. Luo, and Z. Hao, Smart Mater. Struct. 27, 085020 https://doi.org/10.1088/1361-665X/aacfeb (2018).

    Article  Google Scholar 

  7. X. Wang, Y. Zhang, Z. Zhang, L. Liu, B. Wang, Y. Cui, I. Baker, and J. Cheng, Crit. Rev. Solid State Mater. Sci. https://doi.org/10.1080/10408436.2023.2175641 (2023).

    Article  Google Scholar 

  8. K. Otsuka, C. Wayman, K. Nakai, H. Sakamoto, and K. Shimizu, Acta Metall. 24, 207–226 https://doi.org/10.1016/0001-6160(76)90071-7 (1976).

    Article  Google Scholar 

  9. H. Karaca, A. Turabi, Y. Chumlyakov, I. Kireeva, H. Tobe, and B. Basaran, Scr. Mater. 120, 54–57 https://doi.org/10.1016/j.scriptamat.2016.04.008 (2016).

    Article  Google Scholar 

  10. T. Omori, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma, and K. Ishida, Science 333, 68–71 https://doi.org/10.1126/science.1202232 (2011).

    Article  Google Scholar 

  11. W.S. Choi, E.L. Pang, P.-P. Choi, and C.A. Schuh, Scr. Mater. 188, 1–5 https://doi.org/10.1016/j.scriptamat.2020.06.067 (2020).

    Article  Google Scholar 

  12. J. Xia, Y. Noguchi, X. Xu, T. Odaira, Y. Kimura, M. Nagasako, T. Omori, and R. Kainuma, Science 369, 855–858 https://doi.org/10.1126/science.abc1590 (2020).

    Article  Google Scholar 

  13. Y. Tanaka, Y. Himuro, R. Kainuma, Y. Sutou, T. Omori, and K. Ishida, Science 327, 1488–1490 https://doi.org/10.1126/science.1183169 (2010).

    Article  Google Scholar 

  14. T. Omori, H. Iwaizako, and R. Kainuma, Mater. Des. 101, 263–269 https://doi.org/10.1016/j.matdes.2016.04.011 (2016).

    Article  Google Scholar 

  15. Y. Sutou, T. Omori, J. Wang, R. Kainuma, K. Ishida, and J. de Phys, J. de Phys. IV (Proc.). https://doi.org/10.1051/jp4:2003936 (2003).

    Article  Google Scholar 

  16. T. Omori, M. Okano, and R. Kainuma, APL Mater. 1, 032103 https://doi.org/10.1063/1.4820429 (2013).

    Article  Google Scholar 

  17. Y.M. Koval, and S. Ponomaryova, Tech. Phys. 56, 881–884 https://doi.org/10.1134/S1063784211060119 (2011).

    Article  Google Scholar 

  18. D. Vokoun, and C. Hu, Scr. Mater. 47, 453–457 https://doi.org/10.1016/S1359-6462(02)00149-5 (2002).

    Article  Google Scholar 

  19. S. Kajiwara, D. Liu, T. Kikuchi, and N. Shinya, Scr. Mater. 44, 2809–2814 https://doi.org/10.1016/S1359-6462(01)00978-2 (2001).

    Article  Google Scholar 

  20. Y. Tanaka, R. Kainuma, T. Omori, and K. Ishida, Mater. Today Proc. 2, S485–S492 https://doi.org/10.1016/j.matpr.2015.07.333 (2015).

    Article  Google Scholar 

  21. L.W. Tseng, J. Ma, I. Karaman, S.J. Wang, and Y.I. Chumlyakov, Scr. Mater. 101, 1–4 https://doi.org/10.1016/j.scriptamat.2014.12.021 (2015).

    Article  Google Scholar 

  22. C. Zhang, C.Y. Zhu, S.M. Shin, L. Casalena, and K. Vecchio, Mater. Sci. Eng. A 743, 372–381 https://doi.org/10.1016/j.msea.2018.11.077 (2019).

    Article  Google Scholar 

  23. T. Huang, Y. Zhang, Z. Zhang, K. Du, J. Li, L. Liu, X. Wang, and L. Sun, Mater. Char. 199, 112787 https://doi.org/10.1016/j.matchar.2023.112787 (2023).

    Article  Google Scholar 

  24. K. Du, Y. Zhang, Z. Zhang, T. Huang, G. Zhao, L. Liu, X. Wang, and L. Sun, Mater. Sci. Eng. A 855, 143848 https://doi.org/10.1016/j.msea.2022.143848 (2022).

    Article  Google Scholar 

  25. H. Fu, H. Zhao, S. Song, Z. Zhang, and J. Xie, J. Alloys Compd. 686, 1008–1016 https://doi.org/10.1016/j.jallcom.2016.06.273 (2016).

    Article  Google Scholar 

  26. J. Ma, B. Hornbuckle, I. Karaman, G. Thompson, Z. Luo, and Y.I. Chumlyakov, Acta Mater. 61, 3445–3455 https://doi.org/10.1016/j.actamat.2013.02.036 (2013).

    Article  Google Scholar 

  27. Y. Geng, M. Jin, W. Ren, W. Zhang, and X. Jin, J. Alloys Compd. 577, S631–S635 https://doi.org/10.1016/j.jallcom.2012.03.033 (2013).

    Article  Google Scholar 

  28. Y. Geng, D. Lee, X. Xu, M. Nagasako, M. Jin, X. Jin, T. Omori, and R. Kainuma, J. Alloys Compd. 628, 287–292 https://doi.org/10.1016/j.jallcom.2014.12.172 (2015).

    Article  Google Scholar 

  29. L. Liu, Y. Zhang, J. Li, M. Fan, X. Wang, G. Wu, Z. Yang, J. Luan, Z. Jiao, C.T. Liu, P.K. Liaw, and Z. Zhang, Int. J. Plast. https://doi.org/10.1016/j.ijplas.2022.103235 (2022).

    Article  Google Scholar 

  30. G.U. Nanju, D. Guixia, L. Xiaoping, W. Baoqi, and M.A. Xiaoli, Prog. Nat. Sci. 14, 193–200 https://doi.org/10.1080/10020070412331343351 (2004).

    Article  Google Scholar 

  31. L. Liu, Y. Zhang, J. Han, X. Wang, W. Jiang, C.T. Liu, Z. Zhang, and P.K. Liaw, Adv. Sci. 8, 2100870 https://doi.org/10.1002/advs.202100870 (2021).

    Article  Google Scholar 

  32. Z.H. Wang, B. Niu, Q. Wang, C. Dong, J.C. Jie, T.M. Wang, and T.G. Nieh, Mater. Sci. Tech. 93, 60–70 https://doi.org/10.1016/j.jmst.2021.04.011 (2021).

    Article  Google Scholar 

  33. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, and M.X. Huang, Science 357, 1029 https://doi.org/10.1126/science.aan0177 (2017).

    Article  Google Scholar 

  34. G. Gottstein, Solid State Phase Transf. (Phys Found. Mater. Sci.). https://doi.org/10.1007/978-3-662-09291-0 (2004).

    Article  Google Scholar 

  35. Y.I. Chumlyakov, I. Kireeva, E.Y. Panchenko, V. Kirillov, E. Timofeeva, I. Kretinina, Y.N. Danil’son, I. Karaman, H. Maier, and E. Cesari, Russ. Phys. J. 54, 937–950 https://doi.org/10.1007/s11182-011-9701-5 (2012).

    Article  Google Scholar 

  36. Y.I. Chumlyakov, I. Kireeva, O. Kuts, and D. Kuksgauzen, Russ. Phys. J. 57, 1328–1335 https://doi.org/10.1007/s11182-015-0385-0 (2015).

    Article  Google Scholar 

  37. C. Craciunescu, J. Li, and M. Wuttig, Scr. Mater. 48, 65–70 https://doi.org/10.1016/S1359-6462(02)00347-0 (2003).

    Article  Google Scholar 

  38. T. Omori, S. Abe, Y. Tanaka, D. Lee, K. Ishida, and R. Kainuma, Scr. Mater. 69, 812–815 https://doi.org/10.1016/j.scriptamat.2013.09.006 (2013).

    Article  Google Scholar 

  39. I. Kireeva, Y.I. Chumlyakov, V. Kirillov, I. Kretinina, Y.N. Danil’son, I. Karaman, and E. Cesari, Russ. Phys. J. 53, 1103–1106 https://doi.org/10.1007/s11182-011-9536-0 (2011).

    Article  Google Scholar 

  40. I.V. Kireeva, Y.I. Chumlyakov, V.A. Kirillov, I. Karaman, and E. Cesari, Tech. Phys. Lett. 37, 487–490 https://doi.org/10.1134/s1063785011050221 (2011).

    Article  Google Scholar 

  41. J. Ortin, and A. Planes, Acta Mater. 37, 1433–1441 https://doi.org/10.1016/0001-6160(89)90175-2 (1989).

    Article  Google Scholar 

  42. Z. Nishiyama, Martensitic Transformation (Elsevier, New York, 2012).

    Google Scholar 

  43. S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, and A. Hirata, Nature 544, 460–464 https://doi.org/10.1038/nature22032 (2017).

    Article  Google Scholar 

  44. J. Christian, The Theory of Transformations in Metals and Alloys (Newnes, Pergamon, 2002)

    Google Scholar 

  45. K. Du, Y. Zhang, G. Zhao, T. Huang, L. Liu, J. Li, X. Wang, and Z. Zhang, Mater. Sci. Eng. A 890, 145858 https://doi.org/10.1016/j.msea.2023.145858 (2024).

    Article  Google Scholar 

  46. G. Kurdjumov, JOM 11, 449–453 (1959).

    Article  Google Scholar 

  47. T. Yang, Y. Zhao, Y. Tong, Z. Jiao, J. Wei, J. Cai, X. Han, D. Chen, A. Hu, and J. Kai, Science 362, 933–937 https://doi.org/10.1126/science.aas8815 (2018).

    Article  Google Scholar 

  48. S. Qu, I. Yang, H. Liu, X. Ma, and Y. Wang, J. Yunnan Univ. Nat. 24, 346–348 (2015).

    Google Scholar 

  49. R. Völkl, U. Glatzel, and M. Feller-Kniepmeier, Acta Mater. 46, 4395–4404 https://doi.org/10.1016/S1359-6454(98)00085-8 (1998).

    Article  Google Scholar 

  50. U. Brückner, A. Epishin, T. Link, and K. Dressel, Mater. Sci. Eng. A 247, 23–31 https://doi.org/10.1016/j.msea.2012.03.041 (1998).

    Article  Google Scholar 

  51. F. Diologent, P. Caron, T. d’Almeida, A. Jacques, and P. Bastie, Nucl. Instrum. Methods B. 200, 346–351 https://doi.org/10.1016/S0168-583X(02)01699-3 (2003).

    Article  Google Scholar 

  52. L. Dirand, J. Cormier, A. Jacques, J.-P. Chateau-Cornu, T. Schenk, O. Ferry, and P. Bastie, Mater. Char. 77, 32–46 https://doi.org/10.1016/j.matchar.2012.12.003 (2013).

    Article  Google Scholar 

  53. J.R. Patel, and M. Cohen, Acta Metall. 1, 531–538 https://doi.org/10.1016/0001-6160(53)90083-2 (1953).

    Article  Google Scholar 

  54. T. Hsu, and X. Zuyao, Ecomaterials. https://doi.org/10.1016/0036-9748(83)90217-X (1994).

    Article  Google Scholar 

  55. S. Bodner, J. Singer, A. Solan, and Z. Hashin, Theoret. Appl. Mech. 1992, 53 https://doi.org/10.1016/C2009-0-10254-4 (1993).

    Article  Google Scholar 

  56. E. Galindo-Nava, and P. Rivera-Díaz-del-Castillo, Acta Mater. 98, 81–93 https://doi.org/10.1016/j.actamat.2015.07.018 (2015).

    Article  Google Scholar 

  57. E. Galindo-Nava, W. Rainforth, and P. Rivera-Díaz-del-Castillo, Acta Mater. 117, 270–285 https://doi.org/10.1016/j.actamat.2016.07.020 (2016).

    Article  Google Scholar 

  58. N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, and T. Furuhara, Acta Mater. 83, 383–396 https://doi.org/10.1016/j.actamat.2014.10.010 (2015).

    Article  Google Scholar 

  59. E. Nembach, and E. Nembach, Mater. Sci. Tech. https://doi.org/10.1179/026708387790122585 (1997).

    Article  Google Scholar 

  60. T. Gladman, Mater. Sci. Tech. 15, 30–36 (1999).

    Article  Google Scholar 

  61. A. Argon, Strengthening Mechanisms in Crystal Plasticity (OUP Oxford, 2007)

  62. L.M. Brown and R.K. Ham, Strengthening Methods in Crystals (Elsevier, London, 1971)

  63. X. Wei, X. Cao, J. Luan, Z. Jiao, C. Liu, and Z. Zhang, Mater. Sci. Eng. A 832, 142487 https://doi.org/10.1016/j.msea.2021.142487 (2022).

    Article  Google Scholar 

  64. S. Xu, Y. Zhao, D. Chen, L. Sun, L. Chen, X. Tong, C. Liu, and Z. Zhang, Int. J. Plast. 113, 99–110 https://doi.org/10.1016/j.ijplas.2018.09.009 (2019).

    Article  Google Scholar 

  65. Z. Xiong, I. Timokhina, and E. Pereloma, Prog. Mater. Sci. 118, 100764 https://doi.org/10.1016/j.pmatsci.2020.100764 (2021).

    Article  Google Scholar 

  66. J. He, H. Wang, H. Huang, X. Xu, M. Chen, Y. Wu, X. Liu, T. Nieh, K. An, and Z. Lu, Acta Mater. 102, 187–196 https://doi.org/10.1016/j.actamat.2015.08.076 (2016).

    Article  Google Scholar 

  67. L. Liu, Y. Zhang, J. Li, M. Fan, X. Wang, G. Wu, Z. Yang, J. Luan, Z. Jiao, and C.T. Liu, Int. J. Plast. 153, 103235 https://doi.org/10.1016/j.ijplas.2022.103235 (2022).

    Article  Google Scholar 

  68. Z. Wang, B. Niu, Q. Wang, C. Dong, J. Jie, T. Wang, and T. Nieh, J. Mater. Sci. Tech. 93, 60–70 https://doi.org/10.1016/j.jmst.2021.04.011 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the National Key Research and Development Project (2020YFE0202600), the NSFC Funding (U2141207, 52171111, 52001083) and Natural Science Foundation of Heilongjiang (YQ2023E026).

Author information

Authors and Affiliations

Authors

Contributions

Xiyu Wang: Formal analysis, Data curation, Analyzing and discussing data, Writing—original draft. Yang Zhang: Conceptualization, Formal analysis, Supervision, Funding acquisition, Writing—review and editing. Zhongwu Zhang: Conceptualization, Formal analysis, Supervision, Funding acquisition, Writing—review & editing. Junpeng Li: Formal analysis, Data curation, Analyzing and discussing data. Liyuan Liu: Formal analysis, Data curation, Analyzing data. Weiguo Jiang: Formal analysis, Analyzing and discussing data. Kang Du: Formal analysis, Data curation, Analyzing and discussing data.

Corresponding authors

Correspondence to Yang Zhang or Zhongwu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Y., Zhang, Z. et al. High-Number-Density Coherent Nanoprecipitates Induce Superelasticity in a Fe-Ni-Co-Al-Based Alloy. JOM 76, 2526–2536 (2024). https://doi.org/10.1007/s11837-024-06469-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06469-7

Navigation