Skip to main content
Log in

Influence of Ti Addition on Microstructural Evolution, Mechanical Properties, and Corrosion Resistance in Al0.6CrFeNi2.4 Multi-principal Element Alloys

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Given the well-established role of Ti as both a reinforcing and passivating element, we designed a series of multi-principal element alloys (MPEAs) based on the ductile and corrosion-resistant Al0.6CrFeNi2.4 alloy. These alloys, denoted as Al0.6CrFeNi2.4Tix (x = 0, 0.2, 0.4, 0.5, and 0.6), aimed at achieving optimal synergy in mechanical properties and corrosion resistance. As Ti content increased from x = 0–0.5, a notable transition from columnar to equiaxed microstructures was observed, with the primary dendrite arm spacing decreasing from 17.2 μm to 8.3 μm, attributed to the Ti-induced constitutional supercooling. These structural changes played a vital role in improving yield strength, increasing from 376 MPa to an impressive 2074 MPa. Moreover, the Ti dissolution in the (Cr, Fe)-rich FCC phase facilitated the formation of more protective and densely packed passive films, resulting in a comprehensively outstanding performance of the Al0.6CrFeNi2.4Ti0.2 (i.e., self-corrosion voltage/current of − 0.159 V and 2.6 × 10−7 A/cm2 together with a plastic strain of 35.8% and an impressive high fracture strength of 2811 MPa). This research demonstrates the potential of tailored Ti alloying to enhance the comprehensive properties of MPEAs, offering exciting possibilities for advanced materials in various engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Bhandari, F. Khan, R. Abbassi, V. Garaniya, and R. Ojeda, J. Loss Prev. Process Ind. 37, 39 https://doi.org/10.1016/j.jlp.2015.06.008 (2015).

    Article  Google Scholar 

  2. Z. Wang, Z. Zhou, W. Xu, D. Yang, Y. Xu, L. Yang, J. Ren, Y. Li, and Y. Huang, Environ. Sci. Pollut. Res. 28, 54403 https://doi.org/10.1007/s11356-021-15974-0 (2021).

    Article  Google Scholar 

  3. J. Yi, L. Wang, L. Zeng, M. Xu, L. Yang, and S. Tang, Int. J. Refract. Met. Hard Mater. 95, 105416 https://doi.org/10.1016/j.ijrmhm.2020.105416 (2021).

    Article  Google Scholar 

  4. L.L. Xiao, Z.Q. Zheng, S.W. Guo, P. Huang, and F. Wang, Mater. Des. 194, 108895 https://doi.org/10.1016/j.matdes.2020.108895 (2020).

    Article  Google Scholar 

  5. L. Wang, Z. Feng, H. Niu, Q. Gao, M. Xu, L. Yang, and J. Yi, Met. Mater. Int. 28, 2987 https://doi.org/10.1007/s12540-022-01196-7 (2022).

    Article  Google Scholar 

  6. X.W. Qiu, Y.P. Zhang, L. He, and C.G. Liu, J. Alloys Compd. 549, 195 https://doi.org/10.1016/j.jallcom.2012.09.091 (2013).

    Article  Google Scholar 

  7. B. Gorr, M. Azim, H.J. Christ, T. Mueller, D. Schliephake, and M. Heilmaier, J. Alloys Compd. 624, 270 https://doi.org/10.1016/j.jallcom.2014.11.012 (2015).

    Article  Google Scholar 

  8. F. He, Z. Wang, B. Han, Q. Wu, D. Chen, J. Li, J. Wang, C.T. Liu, and J.J. Kai, J. Alloys Compd. 769, 490 https://doi.org/10.1016/j.jallcom.2018.07.336 (2018).

    Article  Google Scholar 

  9. Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw, Corros. Sci. 119, 33 https://doi.org/10.1016/j.corsci.2017.02.019 (2017).

    Article  Google Scholar 

  10. C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang, and S.Y. Dong, Surf. Coat. Technol. 315, 368 https://doi.org/10.1016/j.surfcoat.2017.02.068 (2017).

    Article  Google Scholar 

  11. X. Jin, J. Bi, L. Zhang, Y. Zhou, X. Du, Y. Liang, and B. Li, J. Alloys Compd. 770, 655 https://doi.org/10.1016/j.jallcom.2018.08.176 (2019).

    Article  Google Scholar 

  12. Q. Zhao, Z. Pan, X. Wang, H. Luo, Y. Liu, and X. Li, Corros. Sci. 208, 110666 https://doi.org/10.1016/j.corsci.2022.110666 (2022).

    Article  Google Scholar 

  13. X.W. Qiu, J. Alloys Compd. 555, 246 https://doi.org/10.1016/j.jallcom.2012.12.071 (2013).

    Article  Google Scholar 

  14. A. Munitz, S. Salhov, G. Guttmann, N. Derimow, and M. Nahmany, Mater. Sci. Eng. A 742, 1 https://doi.org/10.1016/j.msea.2018.10.114 (2019).

    Article  Google Scholar 

  15. G. Diao, A. He, D.Y. Li, M. Wu, Z. Xu, W. Li, and Q.Y. Li, Mater. Sci. Eng. A 856, 143910 https://doi.org/10.1016/j.msea.2022.143910 (2022).

    Article  Google Scholar 

  16. J. Yi, L. Yang, L. Wang, M. Xu, and L. Liu, Met. Mater. Int. 28, 227 https://doi.org/10.1007/s12540-021-00990-z (2022).

    Article  Google Scholar 

  17. L. Wang, J. Wang, H. Niu, G. Yang, L. Yang, M. Xu, and J. Yi, J. Alloys Compd. 908, 164683 https://doi.org/10.1016/j.jallcom.2022.164683 (2022).

    Article  Google Scholar 

  18. X.X. Liu, S.G. Ma, W.D. Song, D. Zhao, and Z.H. Wang, J. Alloys Compd. 931, 167523 https://doi.org/10.1016/j.jallcom.2022.167523 (2023).

    Article  Google Scholar 

  19. M. Wu, R.C. Setiawan, and D.Y. Li, Wear 492, 204231 https://doi.org/10.1016/j.wear.2021.204231 (2022).

    Article  Google Scholar 

  20. L. Huang, X. Wang, X. Zhao, C. Wang, and Y. Yang, Mater. Chem. Phys. 259, 124007 https://doi.org/10.1016/j.matchemphys.2020.124007 (2021).

    Article  Google Scholar 

  21. J. Wang, F. Jiang, L. Wang, G. Yang, M. Xu, and J. Yi, J. Alloys Compd. 946, 169423 https://doi.org/10.1016/j.jallcom.2023.169423 (2023).

    Article  Google Scholar 

  22. M. Karimzadeh, M. Malekan, H. Mirzadeh, L. Li, and N. Saini, Mater. Sci. Eng. A 856, 143971 https://doi.org/10.1016/j.msea.2022.143971 (2022).

    Article  Google Scholar 

  23. X. Chen, D. Gao, Y. Zhang, J.X. Hu, Y. Liu, and F. Xiang, Met. Mater. Int. 27, 118 https://doi.org/10.1007/s12540-020-00620-0 (2020).

    Article  Google Scholar 

  24. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci. 61, 1 https://doi.org/10.1016/j.pmatsci.2013.10.001 (2014).

    Article  Google Scholar 

  25. http://www.goodfellow.com/E/T.html.

  26. J. Man, B. Wu, G. Duan, L. Zhang, G. Wan, L. Zhang, N. Zou, and Y. Liu, J. Alloys Compd. 902, 163774 https://doi.org/10.1016/j.jallcom.2022.163774 (2022).

    Article  Google Scholar 

  27. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Appl. Phys. Lett. 90, 181904 https://doi.org/10.1063/1.2734517 (2007).

    Article  Google Scholar 

  28. Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh, J. Alloys Compd. 488, 57 https://doi.org/10.1016/j.jallcom.2009.08.090 (2009).

    Article  Google Scholar 

  29. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Intermetallics 15, 357 https://doi.org/10.1016/j.intermet.2006.08.005 (2007).

    Article  Google Scholar 

  30. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Mater. Sci. Eng. A 527, 6975 https://doi.org/10.1016/j.msea.2010.07.028 (2010).

    Article  Google Scholar 

  31. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Mater. Sci. Eng. A 527, 7210 https://doi.org/10.1016/j.msea.2010.07.049 (2010).

    Article  Google Scholar 

  32. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, J. Alloys Compd. 509, 3476 https://doi.org/10.1016/j.jallcom.2010.10.047 (2011).

    Article  Google Scholar 

  33. S.G. Ma, and Y. Zhang, Mater. Sci. Eng. A 532, 480 https://doi.org/10.1016/j.msea.2011.10.110 (2012).

    Article  Google Scholar 

  34. Y. Dong, Y. Lu, J. Kong, J. Zhang, and T. Li, J. Alloys Compd. 573, 96 https://doi.org/10.1016/j.jallcom.2013.03.253 (2013).

    Article  Google Scholar 

  35. H. Cheng, X. Liu, Q. Tang, W. Wang, X. Yan, and P. Dai, J. Alloys Compd. 775, 742 https://doi.org/10.1016/j.jallcom.2018.10.168 (2019).

    Article  Google Scholar 

  36. Z. Niu, J. Xu, T. Wang, N. Wang, Z. Han, and Y. Wang, Intermetallics 112, 106550 https://doi.org/10.1016/j.intermet.2019.106550 (2019).

    Article  Google Scholar 

  37. Y. Fu, J. Li, H. Luo, C. Du, and X. Li, J. Mater. Sci. Technol. 80, 217 https://doi.org/10.1016/j.jmst.2020.11.044 (2021).

    Article  Google Scholar 

  38. T.T. Shun, L.Y. Chang, and M.H. Shiu, Mater. Sci. Eng. A 556, 170 https://doi.org/10.1016/j.msea.2012.06.075 (2012).

    Article  Google Scholar 

  39. Y. Sun, A. Lan, M. Zhang, H. Yang, and J. Qiao, Mater. Chem. Phys. 265, 124509 https://doi.org/10.1016/j.matchemphys.2021.124509 (2021).

    Article  Google Scholar 

  40. Y.J. Hsu, W.C. Chiang, and J.K. Wu, Mater. Chem. Phys. 92, 112 https://doi.org/10.1016/j.matchemphys.2005.01.001 (2005).

    Article  Google Scholar 

  41. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 https://doi.org/10.1002/adem.200700240 (2008).

    Article  Google Scholar 

  42. Y. Dong, Y. Lu, L. Jiang, T. Wang, and T. Li, Intermetallics 52, 105 https://doi.org/10.1016/j.intermet.2014.04.001 (2014).

    Article  Google Scholar 

  43. X. Yang, and Y. Zhang, Mater. Chem. Phys. 132, 233 https://doi.org/10.1016/j.matchemphys.2011.11.021 (2012).

    Article  Google Scholar 

  44. A. Takeuchi, and A. Inoue, Intermetallics 18, 1779 https://doi.org/10.1016/j.intermet.2010.06.003 (2010).

    Article  Google Scholar 

  45. https://www.crct.polymtl.ca/FACT/documentation.

  46. Y. Chen, S. Zhu, X. Wang, B. Yang, Z. Ren, G. Han, and S. Wen, Vacuum 155, 270 https://doi.org/10.1016/j.vacuum.2018.06.020 (2018).

    Article  Google Scholar 

  47. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, Acta Mater. 102, 187 https://doi.org/10.1016/j.actamat.2015.08.076 (2016).

    Article  Google Scholar 

  48. I. Toda-Caraballo, and P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 85, 14 https://doi.org/10.1016/j.actamat.2014.11.014 (2015).

    Article  Google Scholar 

  49. N.D. Stepanov, D.G. Shaysultanov, M.A. Tikhonovsky, and G.A. Salishchev, Mater. Design 87, 60 https://doi.org/10.1016/j.matdes.2015.08.007 (2015).

    Article  Google Scholar 

  50. Y.Y. Andreev, Russ. J. Phys. Chem. A 81, 967 https://doi.org/10.1134/S0036024407060222 (2007).

    Article  Google Scholar 

  51. C.M. Lin, and H.L. Tsai, Intermetallics 19, 288 https://doi.org/10.1016/j.intermet.2010.10.008 (2011).

    Article  Google Scholar 

  52. X. Wang, Q. Liu, Y. Huang, L. Xie, Q. Xu, and T. Zhao, Mater. 13(10), 2209 https://doi.org/10.3390/ma13102209 (2020).

    Article  Google Scholar 

  53. M. Zhang, X. Shi, Z. Li, H. Xu, and G. Li, Corros. Sci. 207, 110562 https://doi.org/10.1016/j.corsci.2022.110562 (2022).

    Article  Google Scholar 

  54. S. Jiang, Z. Lin, H. Xu, and Y. Sun, J. Alloys Compd. 741, 826 https://doi.org/10.1016/j.jallcom.2018.01.247 (2018).

    Article  Google Scholar 

  55. P. Wu, K. Gan, D. Yan, Z. Fu, and Z. Li, Corros. Sci. 183, 109341 https://doi.org/10.1016/j.corsci.2021.109341 (2021).

    Article  Google Scholar 

  56. L. Li, R.D. Kamachali, Z. Li, and Z. Zhang, Phys. Rev. Mater. 4, 053603 https://doi.org/10.1103/PhysRevMaterials.4.053603 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports from the Zhongwu Research and Innovation Team Project of Jiangsu University of Technology (Grant No. 202101001), Changzhou Science and Technology Bureau (Young Elite Scientists Sponsorship Program), Changzhou Science and Technology Bureau (Nos. CJ20220057, CQ20210086) and Natural Science Research of Jiangsu Higher Education Institutions of China (23KJD430005) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Yang or Jiaojiao Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, C., Gu, C. et al. Influence of Ti Addition on Microstructural Evolution, Mechanical Properties, and Corrosion Resistance in Al0.6CrFeNi2.4 Multi-principal Element Alloys. JOM 76, 2513–2525 (2024). https://doi.org/10.1007/s11837-024-06464-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06464-y

Navigation