Skip to main content
Log in

Electrodeposition of Ni from Choline Chloride/Ethylene Glycol Deep Eutectic Solvent and Pure Ethylene Glycol

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The electrochemical behavior of Ni(II) ions at a glassy carbon electrode was studied using choline chloride–ethylene glycol (ChCl-EG) and ethylene glycol (EG) as solvents. The deposition behavior of Ni(II) was investigated by cyclic voltammetry (CV) tests. The results showed that the reduction of Ni(II) in both non-aqueous solvents was an irreversible process controlled by diffusion, and that the cathodic efficiency and the diffusion coefficient of Ni(II) in EG were higher. The nucleation process of Ni was investigated in detail by chronoamperometry (CA) experiments, and the results showed that the reactions of Ni in EG and ChCl-EG conformed to the three-dimensional transient nucleation mechanism and continuous nucleation mechanism. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to study the microscopic morphology and phase composition of the \nickel plating, and it was verified that different species of complex anions [NiCl3(EG)3] and [NiCl4]2− affected the morphology and density of \nickel metal, and that the nickel plating in EG had small "needle-like" nuclei. The corrosion resistance of the nickel plating was investigated by polarization curves and AC impedance tests, and the results showed that the nickel plating obtained by electrodeposition in EG and EG-NaCl had the best corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Jordan and W.H. Swanger, Bur. Stand. J. Res 5, 1291 (1930).

    Article  Google Scholar 

  2. L.P. Bicelli, B. Bozzini, C. Mele, and L. D’Urzo, Int. J. Electrochem. Sci. 3, 356 (2008).

    Article  Google Scholar 

  3. C.A. Schuh and T.G. Nieh, MRS Online Proc. Library (OPL), 740, i1.8 (2002).

  4. F. Zhang, Z. Yao, O. Moliar, X. Tao, and C. Yang, J. Alloys Compd. 830, 153785 (2020).

    Article  Google Scholar 

  5. I.M. Omar, A.M. Al-Fakih, M. Aziz, and K.M. Emran, Arab. J. Chem. 14, 102909 (2021).

    Article  Google Scholar 

  6. R. Oriňáková, A. Turoňová, D. Kladeková, M. Gálová, and R.M. Smith, J. Appl. Electrochem. 36, 957 (2006).

    Article  Google Scholar 

  7. L. Renzhi, (China (Chemical Industry Press, Beijing, 2010).

    Google Scholar 

  8. K.J. Stine, Appl. Sci. 9(4), 797 (2019).

    Article  Google Scholar 

  9. Z. Jamil, E. Ruiz-Trejo, and N.P. Brandon, J. Electrochem. Soc. 164(4), D210 (2017).

    Article  Google Scholar 

  10. L.M. Cao, Q.C. Cao, J. Zhang, X.Y. Zhu, R.Z. Sun, Z.Y. Du, and C.T. He, Inorg. Chem. 60(5), 3365 (2021).

    Article  Google Scholar 

  11. Electrochemical Aspects of Ionic Liquids. (New York, 2005)

  12. S.A. Forsyth, J.M. Pringle, and D.R. MacFarlane, Aust. J. Chem. 57(2), 113 (2004).

    Article  Google Scholar 

  13. D.R. Gabe, J. Appl. Electrochem. 27(8), 908 (1997).

    Article  Google Scholar 

  14. F. Endres, ChemPhysChem 3(2), 144 (2002).

    Article  Google Scholar 

  15. A.P. Abbott, G. Frisch, J. Hartley, and K.S. Ryder, Green Chem. 13(3), 471 (2011).

    Article  Google Scholar 

  16. A.P. Abbott, A. Ballantyne, R.C. Harris, J.A. Juma, K.S. Ryder, and G.A. Forrest, Electrochim. Acta 176, 718 (2015).

    Article  Google Scholar 

  17. W.D. Sides and Q. Huang, Electrochim. Acta 266, 185 (2018).

    Article  Google Scholar 

  18. M. Galiński, A. Lewandowski, and I. Stępniak, Electrochim. acta 51(26), 5567 (2006).

    Article  Google Scholar 

  19. J. Lu, J.C. Wang, S.H. Wang, M.F. Zhao, and Y. Huang, Mater. Prot. 47(12), 4 (2014).

    Google Scholar 

  20. A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, and P.S. Shikotra, Inorg. Chem. 44(19), 6497 (2005).

    Article  Google Scholar 

  21. B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, and J.R. Sangoro, Chem. Rev. 121(3), 1232 (2020).

    Article  Google Scholar 

  22. T.N. Vorobyova and O.N. Vrublevskaya, Surf. Coat. Tech. 204(8), 1314 (2010).

    Article  Google Scholar 

  23. T.N. Vorobyova, H.M. Maltanova, and O.N. Vrublevskaya, Russ. J. Phys. Chem. A 90, 1081 (2016).

    Article  Google Scholar 

  24. H. Yusen, Y. Tao, X. Zhengyang, and Z. Yongbin, Intermetallics 132, 107155 (2021).

    Article  Google Scholar 

  25. H.P. Nguyen, M. Wu, J. Su, R.J. Vullers, P.M. Vereecken, and J. Fransaer, Electrochim. acta 68, 9 (2012).

    Article  Google Scholar 

  26. D.F. Xu and W.Z. Zhang, University Chemistry 4(6), 36 (1989).

    Google Scholar 

  27. J.O. Bockris and A.N. Reddy, Modern Electrochemistry. (New York: Plenum, 1970)

  28. S. Ghosh, K. Ryder, and S.T.I. Roy, Met. Finish. 92(1), 41 (2014).

    Article  Google Scholar 

  29. C.D. Gu and J.P. Tu, RSC. adv 1(7), 1220 (2011).

    Article  Google Scholar 

  30. A.P. Abbott, K. El Ttaib, K.S. Ryder, and E.L.S.T. Smith, I. Met. Finish. 86(4), 234 (2008).

    Article  Google Scholar 

  31. E.L. Smith, A.P. Abbott, and K.S. Ryder, Chem. Rev. 114(21), 11060 (2014).

    Article  Google Scholar 

  32. H.M. Maltanava, T.N. Vorobyova, and O.N. Vrublevskaya, Surf. Coat. Tech 254, 388 (2014).

    Article  Google Scholar 

  33. D. Knetsch and W.L. Groeneveld, Inorg. Chim. Acta 7, 81 (1973).

    Article  Google Scholar 

  34. P.J. Ruttink, L.J. Dekker, T.M. Luider, and P.C. Burgers, J. mass. spectrom 47(7), 869 (2012).

    Article  Google Scholar 

  35. D. Yue, Y. Jia, Y. Yao, J. Sun, and Y. Jing, Electrochim. Acta 65, 30 (2012).

    Article  Google Scholar 

  36. E.A. Mernissi Cherigui, K. Sentosun, P. Bouckenooge, H. Vanrompay, S. Bals, H. Terryn, and J. Ustarroz, J. Phys. Chem. C 121(17), 9337 (2017).

    Article  Google Scholar 

  37. G. Panzeri, D. Muller, A. Accogli, E. Gibertini, E. Mauri, F. Rossi, and L. Magagnin, Electrochim. Acta 296, 465 (2019).

    Article  Google Scholar 

  38. B. Scharifker and G. Hills, Electrochim. acta 28(7), 879 (1983).

    Article  Google Scholar 

  39. M. Palomar-Pardavé, B.R. Scharifker, E.M. Arce, and M. Romero-Romo, Electrochim. Acta 50(24), 4736 (2005).

    Article  Google Scholar 

  40. D. Grujicic and B. Pesic, Electrochim. Acta 47(18), 2901 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the general project of basic scientific research in colleges and universities of Liaoning Provincial Department of Education [project LJKMZ20220598]; High Level Achievement Construction Project of Shenyang LiGong University [project SYLUXM202105]; Research Innovation Team Support Project of Shenyang LiGong University [Project SYLUTD202004].The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haijing Sun or Jie Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 241 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Sun, H., Tan, Y. et al. Electrodeposition of Ni from Choline Chloride/Ethylene Glycol Deep Eutectic Solvent and Pure Ethylene Glycol. JOM 76, 2178–2188 (2024). https://doi.org/10.1007/s11837-024-06456-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06456-y

Navigation